

# CSAT-5060

5 to 25, 50 & 100 Watts

# C-Band Transceivers Installation and Operation Manual

IMPORTANT NOTE: This manual combines the 25W MN/CSAT506025.IOM, 50W MN/CSAT506050.IOM, and 100W MN/CSAT5060100.IOM manuals into one CSAT5060 manual. In addition, all information contained in this document supersedes all previously published information regarding these products. Product specifications are subject to change without prior notice.



# **Errata A**Comtech EFData Documentation Update

**Subject:** Correct Temperature for Storage Requirements

Date: January 31, 2005
Part Number: MN/CSAT5060.IOM

**Related Document:** CSAT5060, C-Band transceivers Installation and Operation

Manual, Rev. 0 dated July 3, 2004

**Collating Instructions:** Attach this page to page 2-8

## **Comments:**

The following change corrects the Fahrenheit temperature specified for storage. This information will be incorporated into the next revision.

1

## **Change Specifics:**

| Environmental |                      |                          |                   |     |  |  |  |  |
|---------------|----------------------|--------------------------|-------------------|-----|--|--|--|--|
| Temperature   | 40° to +             | 55°C (-40                | )° to 122°        | F)  |  |  |  |  |
|               | -50° to -            | +75°C ( <b>-5</b>        | <b>8</b> ° to 135 | °F) |  |  |  |  |
| Altitude      | 15,000f              | t, mean s                | ea level          |     |  |  |  |  |
| Humidity      | 0 to 100             | percent,                 | relative          |     |  |  |  |  |
| Prime Power   | 90 to 26             | 90 to 260 VAC Standard   |                   |     |  |  |  |  |
|               | 47 to 63 Hz Standard |                          |                   |     |  |  |  |  |
|               | 48 VDC Optional      |                          |                   |     |  |  |  |  |
| Model:        |                      |                          |                   |     |  |  |  |  |
| RF Power      | 5W                   | 5W 10W 25W 50W 100W      |                   |     |  |  |  |  |
| AC Power      | 150W                 | 150W 200W 250W 410W 750W |                   |     |  |  |  |  |

Steady-State True AC Power Requirements (110VAC)



# Errata B Comtech EFData Documentation Update

**Subject:** Correct Operating Temperature; Time for Power-up

**Date:** July 5, 2005

Part Number: MN/CSAT5060.IOM

**Related Document:** CSAT5060, C-Band Transceivers Installation and Operation

Manual, Rev. 0 dated July 3, 2004

**Collating Instructions:** Attach this errata sheet to page 1-3. The information is added to

the end of Section 1.2

#### **Comments:**

The following information describes: the correct operating ambient temperature and unit temperature of the unit, and warm up time. This information will be incorporated into the next revision.

## **Change Specifics:**

Comtech EF Data transceivers are designed to operate continuously at an ambient temperature of -40°C, with the unit temperature at approximately -25°C.

After power-up at temperatures below -30°C, it may take up to 45 minutes tor the unit temperature to stabilize. During this time, the transceiver may log various alarms/events. This is normal and is to be expected.

1

Filename: T\_ERRATA



# CSAT-5060

5 to 25, 50 & 100 Watt

C-Band Transceivers
Installation and Operation Manual

Comtech EF Data is an ISO 9001 Registered Company.



Part Number MN/CSAT5060.IOM Revision 0 July 3, 2004

## **Customer Support**

Contact the Comtech EF Data Customer Support Department for:

- Product support or training
- Information on upgrading or returning a product
- Reporting comments or suggestions concerning manuals

A Customer Support representative may be reached at:

Comtech EF Data
Attention: Customer Support Department
2114 West 7th Street
Tempe, Arizona 85281 USA
480.333.2200 (Main Comtech EF Data Number)
480.333.4357 (Customer Support Desk)
480.333.2161 FAX

or, E-Mail can be sent to the Customer Support Department at:

service@comtechefdata.com

Contact us via the web at www.comtechefdata.com.

To return a Comtech EF Data product (in-warranty and out-of-warranty) for repair or replacement:

- 1. Request a Return Material Authorization (RMA) number from the Comtech EF Data Customer Support Department.
- 2. Be prepared to supply the Customer Support representative with the model number, serial number, and a description of the problem.
- 3. To ensure that the product is not damaged during shipping, pack the product in its original shipping carton/packaging.
- 4. Ship the product back to Comtech EF Data. (Shipping charges should be prepaid.)

For more information regarding the warranty policies, see Warranty Policy, p. xii.

# **Table of Contents**

| CHAPTER 1. INT        | RODUCTION                                          | 1-1 |
|-----------------------|----------------------------------------------------|-----|
| 1.1 Description       |                                                    | 1-1 |
| 1.2 Theory of Operati | ion                                                | 1-3 |
| 1.3.1 Downconverte    | sionr                                              | 1-4 |
| 1.4 Monitor & Contro  | ol                                                 | 1-6 |
| CHAPTER 2. SP         | ECIFICATIONS                                       | 2–1 |
| 2.1 Dimensional Enve  | lope                                               | 2–1 |
| 2.2 Specifications    |                                                    | 2-6 |
| =                     | NNECTOR PINOUTS                                    |     |
| 3.1 Pin-outs          |                                                    | 3-1 |
| 3.1.1 Connector J3:   | AC Power, Mains, 100 to 125 VAC, or 205 to 240 VAC | 3-1 |
| CHAPTER 4. SY         | STEM OPERATION                                     | 4-1 |
| 4.1 Turning On the C  | SAT                                                | 4-1 |
| 4.2 Configuring the C | SAT                                                | 4-1 |
| 4.2.1 Frequency       |                                                    | 4-1 |
|                       |                                                    |     |
|                       |                                                    |     |
|                       |                                                    |     |
|                       |                                                    |     |
|                       | A.J M. J.                                          |     |
|                       | Adjust ModeAdjust                                  |     |
|                       | quency Adjust                                      |     |
|                       | erence Fault Logic                                 |     |
|                       | nction                                             |     |
|                       | ecovery                                            |     |
|                       | Source                                             |     |
| 4.2.14 LNA Current    | Calibration and Current Window                     | 4-6 |

| 4.2.15 LNA Fault Logic                                                             | 4-6 |
|------------------------------------------------------------------------------------|-----|
| 4.2.16 Redundancy Controller Auto/Manual                                           |     |
| 4.2.17 Redundancy Controller Toggle                                                |     |
| 4.2.18 Set Physical Address 4.2.19 Set Baud Rate                                   |     |
| 4.2.20 Set Date                                                                    |     |
| 4.2.21 Set Time                                                                    |     |
| CHAPTER 5. REDUNDANT SYSTEMS                                                       | 5-1 |
| 5.1 Redundant System                                                               |     |
| 5.1.1 RSU-5060 Interfaces                                                          |     |
| 5.1.2 Mechanical Interface                                                         |     |
| 5.2 RSU-5060 Operation                                                             |     |
| 5.2.1 RS-485 Interface                                                             |     |
| 5.2.2 RED AUTO/MANUAL Signal                                                       |     |
| 5.2.4 REDUNDANCY A/B Signals                                                       |     |
| 5.2.5 REDUND FLT Signal                                                            |     |
| 5.2.6 AUXCOM Signals                                                               |     |
| 5.3 Configuring A Redundant System                                                 | 5-9 |
| CHAPTER 6. REMOTE CONTROL                                                          | 6–1 |
| 6.1 Introduction                                                                   |     |
| 6.1.1 RS-485                                                                       |     |
| 6.1.2 RS-232                                                                       | 6–1 |
| 6.2 Basic Protocol                                                                 |     |
| 6.2.1 Packet Structure                                                             |     |
| 6.3 Commands or Responses                                                          |     |
| CHAPTER 7. MAINTENANCE AND TROUBLESHOOTING                                         |     |
| 7.1 Maintenance Testing                                                            |     |
| 7.2 Troubleshooting                                                                | 7-2 |
| 7.3 Converter Faults                                                               | 7-2 |
| 7.3.1 DC Power Supply Voltages                                                     |     |
| 7.3.2 RF Converter Module                                                          |     |
| <ul><li>7.3.3 Reference Oscillator Module</li><li>7.3.4 LNA Curent Fault</li></ul> |     |
| 7.3.5 Fan Fault                                                                    |     |
| 7.3.6 Temperature Fault                                                            |     |
| CHAPTER 8. LNA INSTALLATION                                                        |     |
| 8.1 LNA Installation                                                               | 8-1 |
| 8.1.1 Tools Required                                                               |     |
| 8.1.2 LNA Mounting Kits                                                            |     |
| 8.1.3 Assemble LNA Switch Kit, AS/0438                                             | 8-5 |
| 8.2 Installation of LNA Assembly                                                   | 8-6 |
| 8.2.1 Single-Thread LNA Installation                                               |     |
| 8.2.2 Redundant LNA Installation                                                   |     |
| APPENDIX A. CSAT5060 5 TO 25 WATT INSTALLATION                                     | A-1 |
| A.1 Unpacking and Inspection                                                       | A-1 |

| A.1.1 Man-Power                                         | A-1  |
|---------------------------------------------------------|------|
| A.1.2 Tools Required                                    | A-1  |
| A.2 Single-Thread Configuration                         | A-2  |
| A.2.1 Mounting Kit                                      |      |
| A.2.2 Single-Thread Installation                        |      |
| A.2.3 Cable Installation                                |      |
| A.3SPAR-Mount Installation                              |      |
| A.3SPAR-Mount Installation                              |      |
| A.3.2 Mounting Instructions                             |      |
| A.3.3 Cable Installation                                |      |
| A.4 Redundancy Configuration                            | A-13 |
| A.4.1 Mounting Kits                                     |      |
| A.4.2 Assemble Tx/Remote Switch, AS/0503                |      |
| A.4.3 Connect Cabling to the Remote Switch Box, AS/0490 |      |
| A.5 Redundancy Installation                             |      |
| APPENDIX B. CSAT5060 50-WATT INSTALLATION               |      |
| B.1 Unpacking and Inspection                            | B–1  |
| B.2 Personnel                                           | B-1  |
| B.3 Tools Required                                      | B–1  |
| B.4 Single-Thread Configuration                         | B-2  |
| B.4.1 Mounting Kits                                     |      |
| B.4.2 Single-Thread Installation                        |      |
| B.4.3 Cable Installation                                |      |
| B.5.1 Mounting Kit                                      |      |
| B.5.2 Redundancy Installation                           |      |
| B.6 Cable Installation                                  |      |
| APPENDIX C. CSAT5060 100-WATT INSTALLATION              |      |
| C.1 Unpacking and Inspection                            |      |
| C 2 Man Parson                                          | C 1  |
| C.3 Tools Required                                      |      |
| -                                                       |      |
| C.4 Single -Thread Configuration                        |      |
| C.4.2 Single-Thread Installation                        |      |
| C.4.3 Cable Installation                                |      |
| C.5 Redundancy Configuration                            |      |
| C.5.1 Mounting Kit                                      |      |
| C.5.2 Redundancy Installation                           |      |
| C.6 Cable Installation                                  |      |

## **Figures**

| Figure 1-1. Functional Block Diagram of the Downconverter Section  | 1-4  |
|--------------------------------------------------------------------|------|
| Figure 1-2. Functional Block Diagram of the Upconverter Section    | 1-5  |
| Figure 2-1. CSAT5060 25 Watt Dimensional Envelope                  | 2-2  |
| Figure 2-2. CSAT5060 50 Watt Dimensional Envelope                  | 2-3  |
| Figure 2-3. CSAT5060 100Watt Dimensional Envelope                  | 2-4  |
| Figure 2-4. Remote Switch Dimensional Drawing                      | 2-5  |
| Figure 5-1. Typical CSAT Redundant System                          | 5-1  |
| Figure 5-2. RSU-5060 Functional Block Diagram                      | 5-6  |
| Figure-7-1. Converter Signal and Interconnecting Cable Diagram     | 7-1  |
| Figure 8-1 Mounting LNA Switch Kit, AS/0438                        | 8-2  |
| Figure 8-2. TX/RX Filter Support Bracket, AS/0502                  | 8-3  |
| Figure 8-3. Waveguide Kit, CPR229, AS/0461                         | 8-4  |
| Figure 8-4. Switch Port Locations                                  | 8-5  |
| Figure A-1. Universal Pole Mounting Kit, AS/0414                   | A-3  |
| Figure A-2. Single-Thread Bracket, AS/0608                         |      |
| Figure A-3. Single-Thread Installation                             |      |
| Figure A-4. Preparing the Pole Bracket                             | A-5  |
| Figure A-5. Installation the Pole Bracket with CSAT Mounting Plate | A-6  |
| Figure A-6. CSAT Single-Thread Bracket with Hardware               |      |
| Figure A-7. Install CSAT Single-Thread Bracket.                    | A-7  |
| Figure A-8. Mount CSAT Unit                                        | A-7  |
| Figure A-9. Cable Connections.                                     | A-9  |
| Figure A-10. SPAR-Mount Configuration.                             |      |
| Figure A-11. SPAR Mount Kit, KT/9676-1 or KT/9676-2                |      |
| Figure A-12. Mounting Instructions                                 | A-11 |
| Figure A-13. Cable Connections.                                    |      |
| Figure A-14. Redundancy Configuration                              |      |
| Figure A-15. 1:1 25W CSAT TX Switch Bracket, AS/0489               |      |
| Figure A-16. Cable Kit, AS/0440                                    |      |
| Figure A-17. Remote Switch Box Assembly, AS/0490                   |      |
| Figure A-18. TX/Remote Switch Assembly, AS/0503                    | A-17 |
| Figure A-19. Connection for the TX/Remote Switch Ports             | A-18 |
| Figure A-20. Remote Switch Cast Box and Hardware                   |      |
| Figure A-21. Installation of the Redundant Brackets                |      |
| Figure A-22. Installation of the CSAT Transceivers                 | A-21 |
| Figure A-23. Cable the Redundant Configuration                     | A-21 |
| Figure A-24. Cabling the Redundant Configuration                   | A-23 |
| Figure B-1. Universal Pole Mounting Kit, AS/0414                   | B-3  |
| Figure B-2. CSAT Mounting Brackets, AS/0415                        | B-4  |
| Figure B-3. Single-Thread Installation                             | B-5  |
| Figure B-4. Installating the Pole Bracket                          |      |
| Figure B-5. Looking Down                                           |      |
| Figure B-6. CSAT Single-Thread Bracket with Hardware               |      |
| Figure B-7. Install CSAT 50 Watt Unit                              |      |
| Figure B-8. Installation of LNA                                    |      |
| Figure B-9. Cable Connections                                      |      |

| Figure B-10. TX Switch Mounting Kit, AS/0437                   | B-12 |
|----------------------------------------------------------------|------|
| Figure B-11. Mounting LNA Switch Kit, AS/0438                  | B-13 |
| Figure B-12. TX/RX Filter Support Bracket, AS/0502             | B-14 |
| Figure B-13. Cable Kit                                         |      |
| Figure B-14. Waveguide Kit, CPR137G, AS/0460.                  | B-16 |
| Figure B-15. Waveguide Kit, CPR229, AS/0461                    | B-17 |
| Figure B-16. Waveguide Switch, TX 1:1, AS/0462                 | B-18 |
| Figure B-17. Remote Switch Box Assembly, AS/0490               | B-19 |
| Figure B-18. Redundant Configuration                           |      |
| Figure B-19. Assemble Waveguide Switch, AS/0462                | B-21 |
| Figure B-20. Switch Port Locations.                            | B-23 |
| Figure B-21. LNA Switch Kit, AS/0438                           |      |
| Figure B-22. Preparing the Pole Bracket                        | B-24 |
| Figure B-23. Pipe Blocks                                       | B-25 |
| Figure B-24. Looking Down at Pipe Blocks.                      | B-26 |
| Figure B-25. Position Brackets Brackets against Center Bracket |      |
| Figure B-26. Installation of the Waveguide Switch              | B-27 |
| Figure B-27. Installation of the Redundant LNA Assembly        |      |
| Figure B-28. Cable Installation                                | B-30 |
| Figure C-1. Universal Pole Mounting Kit, AS/0414               |      |
| Figure C-2. CSAT Mounting Brackets, AS/0415                    |      |
| Figure C-3. Looking Down                                       |      |
| Figure C-4. Installing the Pole Bracket.                       |      |
| Figure C-5. CSAT Single-Thread Bracket with Hardware           |      |
| Figure C-6. Install CSAT 100 Watt Unit                         |      |
| Figure C-7. Installation of LNA                                |      |
| Figure C-8. Cable Installation.                                |      |
| Figure C-9. TX Switch Mounting Kit, AS/0479                    |      |
| Figure C-10. Mounting LNA Switch Kit, AS/0438                  |      |
| Figure C-11. TX/RX Filter Support bracket, AS/0502             |      |
| Figure C-12. Cable Kit.                                        |      |
| Figure C-13. Waveguide Kit, AS/0460                            |      |
| Figure C-14. Waveguide Kit, CPR229, AS/0461                    |      |
| Figure C-15. Waveguide Switch, TX 1:1, AS/0478                 |      |
| Figure C-16. Remote Switch Box Assembly, AS/0490               |      |
| Figure C-17. Redundant Configuration                           |      |
| Figure C-18. Switch Port Locations                             |      |
| Figure C-19. Assemble Waveguide Switch, AS/0478.               |      |
| Figure C-20. Pipe Blocks                                       |      |
| Figure C-21. Looking Down at Pipe Blocks                       |      |
| Figure C-22. Observe for Gap                                   |      |
| Figure C-23. Installation of the Waveguide Switch              |      |
| Figure C-24. Waveguide Layout                                  |      |
| Figure C-25. Installation of the Redundant LNA Assembly        |      |
| Figure C-26. Cable Installation                                |      |

## **Tables**

| Table 5-1. | -48VDC Input Option                                   | 5-     |
|------------|-------------------------------------------------------|--------|
|            | RSU-5060 Interface Connectors                         |        |
| Table 7-2. | CSAT A Signal Description (Connector J1)              | 7-3    |
| Table 7-3. | RX Waveguide Switch Signal Description (Connector J2) | 7-3    |
| Table 7-4. | CSAT B Signal Description (Connector J3)              | 7-4    |
| Table 7-5. | TX Waveguide Switch Signal Description (Connector J4) | 7-4    |
| Table 7-6. | M&C Signal Description (Connector J5)                 | 7-5    |
|            | RS-485 Interface                                      |        |
| Table 8-2. | RS-232 Interface                                      | 8-2    |
| Table 8-3. | Master-to-Slave:                                      | 8-3    |
|            | Slave-to-Master:                                      |        |
| Table A-1. | Universal Pole Mount, AS/0599                         | A-2    |
|            | SPAR Mount Installation                               |        |
| Table A-3. | 1:1 Mounting Kit Assembly, AS/0596                    | . A-13 |
|            | Assembly, 1:1 25W CSAT Switching, AS/0510             |        |
|            | Universal Pole Mount, 50 Watt, AS/0600                |        |
| Table B-2. | Final 1:1, C-Band Assembly                            | B-1    |
| Table B-3. | 1:1 Mounting Assembly, AS/0597                        | B-     |
|            | Universal Pole Mount, 100 Watt, AS/0600               |        |
| Table C-2. | Final 1:1, C-Band Assembly                            | C-10   |
| Table C-3. | 1:1 Mounting Assembly, AS/0598                        | C-10   |
|            |                                                       |        |

### **About this Manual**

This manual provides installation and operation information for the Comtech EF Data CSAT-5060 5 to 25 Watt, 50 Watt, or 100 Watt C-Band Transceiver. This is a technical document intended for earth station engineers, technicians, and operators responsible for the operation and maintenance of the CSAT.

### **Conventions and References**

## **Cautions and Warnings**



CAUTION indicates a hazardous situation that, if not avoided, may result in minor or moderate injury. CAUTION may also be used to indicate other unsafe practices or risks of property damage.



WARNING indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.



IMPORTANT indicates a statement that is associated with the task being performed.

#### **Metric Conversion**

Metric conversion information is located on the inside back cover of this manual. This information is provided to assist the operator in cross-referencing English to Metric conversions.

#### **Trademarks**

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective companies and are hereby acknowledged.

## **Reporting Comments or Suggestions Concerning this Manual**

Comments and suggestions regarding the content and design of this manual will be appreciated. To submit comments, please contact:

Comtech EF Data Technical Publications Department: techpub@comtechefdata.com

## **Safety Notice**

This equipment has been designed to minimize exposure of personnel to hazards.

The operators and technicians must:

- Know how to work around, with and on high voltage equipment.
- Exercise every precaution to ensure personnel safety.
- Exercise extreme care when working near high voltages.
- Be familiar with the warnings presented in this manual.



A Neutral Fusing - Double pole/ neutral fusing used on the prime power supply input.

## Installation Guidelines Regarding Power Line Quality



Comtech EF Data has become familiar with the varying quality of the AC power grid around the world. The following offers some installation guidelines that should help ensure a reliable installation.

- Surge suppression: High voltage surges can cause failure of the power supply. These surges are typically caused by circuit switching on the main AC power grid, erratic generator operation, and also by lightning strikes. While the CSAT does have built in surge suppression, if the unit will be installed in a location with questionable power grid quality, Comtech EF Data recommends installation of additional power conditioning/surge suppression at the power junction box.
- **Grounding:** The CSAT provides a grounding terminal. This is provided to allow the user to ground the CSAT to the antenna's grounding network. All components installed at the antenna should be grounded to a common grounding point at the antenna.
- **Electrical welding:** If welding needs to take place at the antenna, disconnect all cables from the CSAT except for the ground wire. Cap all RF connections with terminations. This will prevent damage to the input/output circuitry of the CSAT.
- **Lightning:** Lightning strikes on or around the antenna will generate extremely high voltages on all cables connected to the CSAT. Depending on the severity of the strike, the CSAT's internal surge protection combined with the recommended external suppression may protect the CSAT's power supply. However, if the installation will be in an area with a high probability of lightning

strikes, Comtech EF Data recommends the installation of surge suppression on the RF and IF cables. One source of these suppressors is PolyPhaser (<a href="www.polyphaser.com">www.polyphaser.com</a>)

For further information, contact Comtech EF Data, Customer Support Department.

## **Warranty Policy**

This Comtech EF Data product is warranted against defects in material and workmanship for a period of 24 months from the date of shipment. During the warranty period, Comtech EF Data will, at its option, repair or replace products that prove to be defective.

For equipment under warranty, the customer is responsible for freight to Comtech EF Data and all related custom, taxes, tariffs, insurance, etc. Comtech EF Data is responsible for the freight charges **only** for return of the equipment from the factory to the customer. Comtech EF Data will return the equipment by the same method (i.e., Air, Express, Surface) as the equipment was sent to Comtech EF Data.

## **Limitations of Warranty**

The foregoing warranty shall not apply to defects resulting from improper installation or maintenance, abuse, unauthorized modification, or operation outside of environmental specifications for the product, or, for damages that occur due to improper repackaging of equipment for return to Comtech EF Data.

No other warranty is expressed or implied. Comtech EF Data specifically disclaims the implied warranties of merchantability and fitness for particular purpose.

#### **Exclusive Remedies**

The remedies provided herein are the buyer's sole and exclusive remedies. Comtech EF Data shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

#### **Disclaimer**

Comtech EF Data has reviewed this manual thoroughly in order to provide an easy-to-use guide to your equipment. All statements, technical information, and recommendations in this manual and in any guides or related documents are believed reliable, but the accuracy and completeness thereof are not guaranteed or warranted, and they are not intended to be, nor should they be understood to be, representations or warranties concerning the products described. Further, Comtech EF Data reserves the right to make changes in the specifications of the products described in this manual at any time without notice and without obligation to notify any person of such changes.

If you have any questions regarding your equipment or the information in this manual, please contact the Comtech EF Data Customer Support Department.

## **Chapter 1. INTRODUCTION**

## 1.1 DESCRIPTION

The CSAT5060, otherwise referred to as, 'the CSAT" is designed for use in communication systems, or in satellite uplink data systems, for the reception of SCPC/MCPC, DAMA, and TDMA communication signals. It also can be used in communications system applications with full transponder HDTV and analog TV.

The CSAT is environmentally sealed and is designed to be hard mounted on or near the antenna structure. A covered cooling fan is mounted on the outside of the unit to maintain a reduced operating temperature for enhanced reliability.



The Downconverter RF input connector is wired to supply DC voltage to an LNA. This voltage is capable of damaging any test equipment connected to the connector. Do not connect test equipment to this connector without a coaxial DC block between the connector and the test equipment.

The CSAT delivers the full rated power measured at the 1 dB compression point and at the output flange. The dual synthesizers in the unit deliver phase noise performance exceeding Intelsat specification. The design of the unit providers a high TOI that allows multi-carrier applications without the concerns associated with lower power environments.



CSAT-5060 5 to 25 Watt C-Band Transceiver

CSAT-5060 50 Watt C-Band Transceiver





CSAT-5060 100W C-Band Transceiver

## 1.2 Theory of Operation

This chapter contains a general description of the theory of operation for the CSAT Downconverter and Upconverter sections. The CSAT can be used for SCPC/MCPC, DAMA, and TDMA, as well as for full transponder HDTV and analog TV applications.

In all models, the downconverter and upconverter local oscillators are independently synthesized to allow simplex or duplex operation. In order to minimize complexity, they share a common power supply, an internal high stability 10 MHz reference oscillator, and the Monitor and Control (M&C) unit.

The Downconverter section operates in the frequency range of 3400 to 4200 MHz, with a temperature compensated gain of 45 dB. This high level of gain provides an IF output signal level of +13 dBm at 1 dB of gain compression. This provides the capability to handle longer modem cable runs, or fan out for splitting networks without requiring additional line amplifiers.

The Upconverter section operates over a frequency range of 5845 to 6425 MHz with a temperature compensated gain. The RF output level is specified as minimum at 1 dB gain compression over the operating temperature range.

The phase noise performance of both the Upconverter and Downconverter section exceeds the Intelsat phase noise mask for IBS and IDR services by 6 dB. This allows phase dependent demodulators to provide the best possible performance. The close-in phase noise is also very low making the converter ideal for low data rate applications such as DAMA hub earth stations.

An auto select RS-232 or RS-485 pin out is available in the circular COM connector on the exterior of the chassis. All configuration control, status retrieval and unit adjustments are available as ASCII commands through this interface.

## 1.3 RF SIGNAL CONVERSION

### 1.3.1 DOWNCONVERTER

The RF input to the Downconverter is in the 3400 to 4200 MHz frequency range at a typical level of -45 dBm. The input signal is mixed down to the 1110 MHz IF in the first conversion mixer. High side LO injection is used for this mixing process. The Downconverter RFLO synthesizer in the 4510 to 5310 MHz frequency range provides it in 1.000 or 2.500 MHz steps. Both step sizes are automatically selectable.

IF filtering is provided by the 1110 MHz BPF. It is just wide enough to pass the 36 MHz bandwidth of the desired signal while maintaining more than adequate amplitude and group delay flatness. At the same time, it is narrow enough to provide the necessary rejection to the image, the RFLO, and other spurious signals. The second mixer operates at a fixed input frequency of 1110 MHz. It operates with high side LO injection at 1180 MHz provided by the Downconverter IFLO and converts the IF signal down to the  $70 \pm 18$  MHz output frequency.

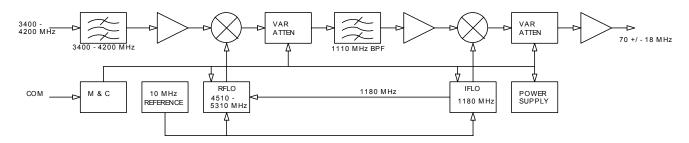



Figure 1-1. Functional Block Diagram of the Downconverter Section

### 1.3.2 UPCONVERTER

The RF input to the Upconverter is at  $70 \pm 18$  MHz at a typical level of -35 dBm which would provide an output power back-off of 8 dB. In operation, the input signal is mixed up to the 1250 MHz IF in the first conversion mixer operating at a fixed frequency with low side LO injection at 1180 MHz provided by the Upconverter IFLO. IF filtering is provided by the 1250 MHz BPF. It is just wide enough to pass the 36 MHz bandwidth of the desired signal while maintaining more than adequate amplitude and group delay flatness. At the same time, it is narrow enough to provide the necessary rejection to any unwanted mixer products, the IFLO, and other spurious signals.

The second mixer up converts the 1250 MHz IF signal to the desired output frequency. It uses low side LO injection in the 4595 to 5175 MHz frequency range provided by the Upconverter RFLO in 1.000 or 2.500 MHz steps. Both step sizes are automatically selectable. The upconverter signal is then filtered to reject the RFLO leakage, and any other unwanted mixer spurs at the mixer output. The output signal is then amplified by a series of internally matched power FET's to raise the power level of the output signal to the specified level. An isolator is provided at the output of the high power output stage to protect it from mismatches at the output connection to the antenna feed.

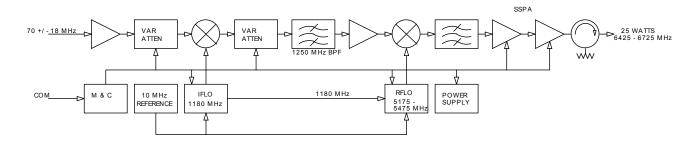



Figure 1-2. Functional Block Diagram of the Upconverter Section

## 1.4 MONITOR & CONTROL

The Monitor & Control (M&C) unit is designed to monitor the functions of the transceiver, and provide the control for remote command inputs to the Up and Down converter sections. It controls the attenuator settings, the frequency settings, and it monitors the alarm system and logs any alarms that might occur. Remote control inputs are provided through the RS-232 or RS-485 connections in the circular COM connector either by remote computer interface or by local operator inputs through the external hand held control unit.

## **Chapter 2. SPECIFICATIONS**

## 2.1 Dimensional Envelope

Refer to Figure 2-1, Figure 2-2, or Figure 2-3 as appropriate for CSAT dimensions and Figure 2-4 for Remote Switch dimensions.



Comtech EF Data reserves the right to change specifications of products described in this document at any time without notice and without obligation to notify any person of such changes. Information in this document may differ from that published in other Comtech EF Data documents. Refer to the website or contact Customer Service for the latest released product information.

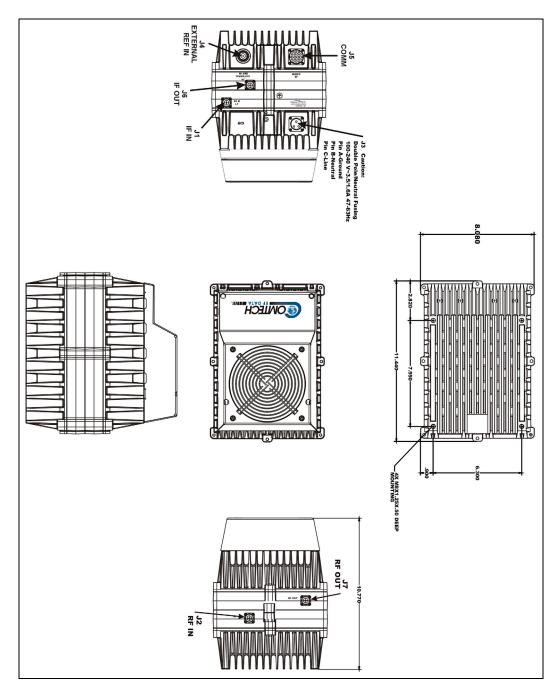



Figure 2-1. CSAT5060 25-Watt Dimensional Envelope

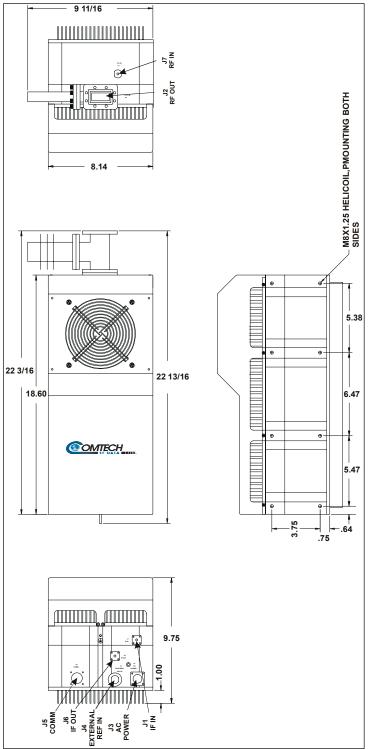



Figure 2-2. CSAT5060 50-Watt Dimensional Envelope

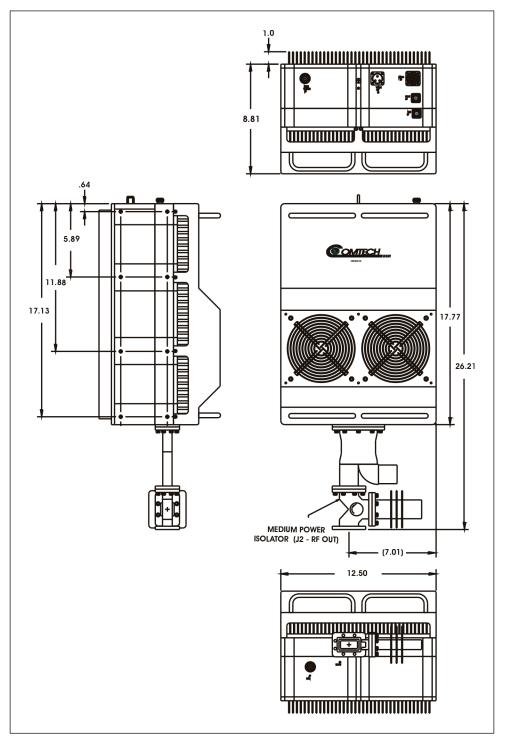



Figure 2-3 CSAT5060-100W Dimensional Envelope

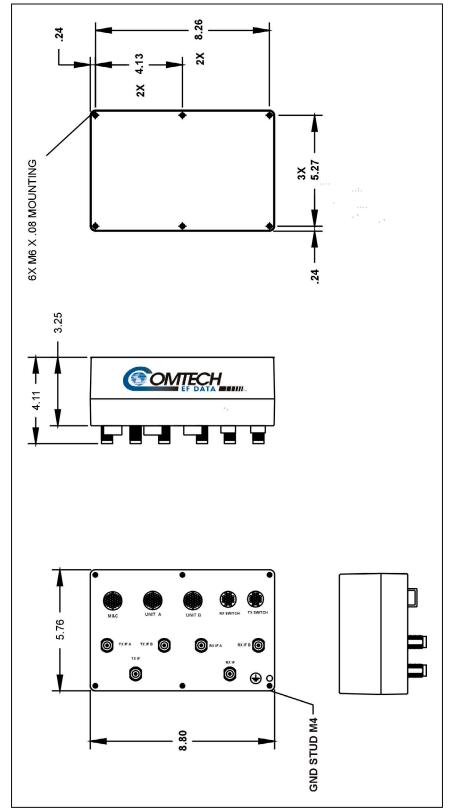



Figure 2-4 Remote Switch Dimensional Drawing

This page is intentionally left blank.

## 2.2 SPECIFICATIONS

| Transmit                      |                                                                                                                                                                                                                    |         |       |  |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|--|--|--|--|
| Frequency RF                  | 5845 to 6425 MHz Standard<br>6425 to 6725 MHz (Optional Extended)<br>5850 to 6650 MHz (Optional Wide)<br>5845 to 6725 MHz (Optional Super Wide)                                                                    |         |       |  |  |  |  |
| Frequency IF                  | 70 MHz ±<br>140 MHz                                                                                                                                                                                                | 18 MF   | lz    |  |  |  |  |
| Output Power,<br>P1dB<br>Gain | Model:         5W         10W         25W         50W         100W           dBm:         +37         +40         +44         +47         +50           dB:         65         68         71         74         77 |         |       |  |  |  |  |
| Attenuator<br>Range           | 25 dB in (                                                                                                                                                                                                         | 0.25 dE | steps |  |  |  |  |
| Gain Flatness                 | ± 0.75 dB<br>± 0.75 dB                                                                                                                                                                                             |         |       |  |  |  |  |
| Gain Stability                | ±0.25 dB at constant C                                                                                                                                                                                             |         |       |  |  |  |  |
| Carrier Mute                  | -70 dBc                                                                                                                                                                                                            |         |       |  |  |  |  |
| Inter-modulation              | -33 dBc for 2-carriers at 6 dB OPBO from rated power                                                                                                                                                               |         |       |  |  |  |  |
| Second Hamonic                | -55 dBc                                                                                                                                                                                                            |         |       |  |  |  |  |
| Spurious                      | AC line Harmonics -45 dBc Carrier related, <500 kHz -60 dBc All other in-band -65 dBc                                                                                                                              |         |       |  |  |  |  |
| AM to PM<br>Conversion        | 3.0 degrees at 6dB<br>OPBO from rated power                                                                                                                                                                        |         |       |  |  |  |  |
| RF Output<br>VSWR             | 1.25:1                                                                                                                                                                                                             |         |       |  |  |  |  |
| RF Output<br>Connector        | Type N Female for 5W, 10W, 25W units CPR137G for 50W, 100W units                                                                                                                                                   |         |       |  |  |  |  |
| IF Input<br>Impedance         | 50Ω                                                                                                                                                                                                                |         |       |  |  |  |  |
| IF Input VSWR                 | 1.25:1                                                                                                                                                                                                             |         |       |  |  |  |  |
| IF Input<br>Connector         | Type N Female                                                                                                                                                                                                      |         |       |  |  |  |  |

| Receive                        |                                                                     |
|--------------------------------|---------------------------------------------------------------------|
| Frequency RF                   | 3625 to 4200 Mhz<br>3400 to 4200 MHz<br>(Optional)                  |
| Frequency IF                   | 70 MHz ± 18 MHz<br>140 MHz ± 36 MHz<br>(Optional)                   |
| Gain, without LNA              | 45 dB                                                               |
| Gain Flatness, without LNA     | ± 0.75 dB full RF Band<br>± 0.75 dB per 36 MHz                      |
| Gain Stability,<br>without LNA | ±0.25 dB at constant C<br>± 1.00 dB -40° to +55°C<br>(-40 to 122°F) |
| Output Power,<br>P1dB          | +13 dBm                                                             |
| 2-Tone inter-<br>modulation    | -50 dBc for 2-tones at 0 dBm each, 1 Mhz apart                      |
| Image Rejection                | -60 dBc                                                             |
| RF Input VSWR                  | 1.25:1                                                              |
| RF Input Connector             | Type N Female                                                       |
| IF Output<br>Impedance         | 50Ω                                                                 |
| IF Output VSWR                 | 1.25:1                                                              |
| IF Output<br>Connector         | Type N Female                                                       |

| Conversion             |                                                                                                                             |                                                      |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|
| Conversion             | Dual, no spectral inversion                                                                                                 |                                                      |  |  |
| Frequency Step<br>Size | 1.0 and 2.5 MHz automatic                                                                                                   |                                                      |  |  |
| Frequency<br>Stability | 1 x 10 <sup>-9</sup> /day<br>1 x 10 <sup>-7</sup> /year<br>40° to +55°C (-40 to 122°F)<br>1 x 10 <sup>-8</sup> /Temperature |                                                      |  |  |
| Attenuation            | TX 0 to 25 dB ii<br>RX 0 to 20 dB ir                                                                                        | n 0.25 db steps<br>n 0.25 dB steps                   |  |  |
| Phase Noise            | 100 Hz<br>1 kHz<br>10 kHz<br>100 kHz                                                                                        | -66 dBc/Hz<br>-76 dBc/Hz<br>-86 dBc/Hz<br>-96 dBc/Hz |  |  |
| Group Delay            | Parabolic 0.02                                                                                                              | ns/MHz<br>2 ns/MHz <sup>2</sup><br>s p-p             |  |  |

| Monitor & Co. | Monitor & Control                          |                                |             |          |      |  |  |
|---------------|--------------------------------------------|--------------------------------|-------------|----------|------|--|--|
| Methods       |                                            | C 405 on                       | 4 DC 22     | 2 Coriol |      |  |  |
| Methods       | Both RS-485 and RS-232 Serial<br>Interface |                                |             |          |      |  |  |
|               |                                            | Hand held controller, optional |             |          |      |  |  |
| Commands      |                                            | RX frequ                       |             | ionai    |      |  |  |
| Commands      |                                            | RX atter                       | ,           |          |      |  |  |
|               |                                            | TX outpu                       |             |          |      |  |  |
|               | Mute T                                     | •                              | at power    |          |      |  |  |
|               |                                            | •                              | emperat     | ure      |      |  |  |
|               |                                            |                                | lov ylqqı   |          |      |  |  |
|               | Set Tim                                    | •                              | apply von   | agoo     |      |  |  |
| Faults        |                                            |                                | rter funct  | tions    |      |  |  |
|               |                                            |                                | rter syntl  |          |      |  |  |
|               | -                                          |                                | ces oscil   |          |      |  |  |
|               | LNA Cu                                     | ırrent fau                     | ılt         |          |      |  |  |
|               | Overter                                    | mperatur                       | e condition | on       |      |  |  |
| Low Noise     | 45°K, n                                    | 45°K, non-isolated standard    |             |          |      |  |  |
| Amplifier     | Other noise temperature available          |                                |             |          |      |  |  |
| Environmental |                                            |                                |             |          |      |  |  |
|               |                                            |                                |             |          |      |  |  |
|               |                                            |                                |             |          |      |  |  |
|               |                                            |                                |             |          |      |  |  |
| Temperature   | 40° to +                                   | +55°C (-4                      | 10 to 122   | °F)      |      |  |  |
|               | -50° to                                    | +75°C (-                       | 90 to 135   | 5°F)     |      |  |  |
|               |                                            |                                |             |          |      |  |  |
| Altitude      | 15,000ft, mean sea level                   |                                |             |          |      |  |  |
| Humidity      | 0 to 100 percent, relative                 |                                |             |          |      |  |  |
| Prime Power   | 90 to 260 VAC Standard                     |                                |             |          |      |  |  |
|               | 47 to 63 Hz Standard                       |                                |             |          |      |  |  |
|               | 48 VDC Optional                            |                                |             |          |      |  |  |
| Model:        |                                            |                                |             |          |      |  |  |
| RF Power      | 5W                                         | 10W                            | 25W         | 50W      | 100W |  |  |
| AC Power      | 150W                                       | 200W                           | 250W        | 410W     | 750W |  |  |

Steady-State True AC Power Requirements (110VAC)

| Dimensional |             |                   |                         |  |  |  |
|-------------|-------------|-------------------|-------------------------|--|--|--|
| Dimensions: | <u>Unit</u> | <u>Inches</u>     | <u>Centimeters</u>      |  |  |  |
|             | 5, 10, 25W  | 8H x 8W x 11D     | 20H x 20W x 28D         |  |  |  |
|             | 50W         | 9.75H x 10W x 23D | 24.77H x 25.4W x 58.42D |  |  |  |
|             | 100W        | 10H x 12.5W x 26D | 25.4H x 31.75W x 66.04D |  |  |  |
| Weight:     | <u>Unit</u> | <u>Pounds</u>     | <u>Kilograms</u>        |  |  |  |
|             | 5, 10, 25W  | 36 lbs            | 16 kg                   |  |  |  |
|             | 50W         | 65 lbs            | 29 kg                   |  |  |  |
|             | 100W        | 80 lbs            | 40 kg                   |  |  |  |

## **Chapter 3. CONNECTOR PINOUTS**

## 3.1 Pin-outs

3.1.1 Connector J3: AC Power, Mains, 100 to 125 VAC, or 205 to 240 VAC.



To avoid a serious shock hazard, correctly determine the mating connector type in use and wire it according to the following table:

|     | EARLY UNITS                                          | NEWER UNITS                             |
|-----|------------------------------------------------------|-----------------------------------------|
| Pin | Mating Connector Type<br>KPT06J12-3S<br>MS3116J12-3S | Mating Connector Type<br>CA3106E18-22SB |
| Α   | Line                                                 | Ground                                  |
| В   | Ground                                               | Neutral                                 |
| С   | Neutral                                              | Line                                    |

Table 3-1. -48VDC Input Option

|     | •              |
|-----|----------------|
| Pin | Description    |
| Α   | Return         |
| В   | Chassis Ground |
| С   | -48 VDC        |
| D   | No Connection  |

## 3.1.2 Connector J5: COMM, Remote communications port

Mating connector: ITT: KPT06J14-19P or MS3116J14-19P Connections, refer to the following table:

| Pin | Signal            | I/O     | Notes                                             |
|-----|-------------------|---------|---------------------------------------------------|
| Α   | RS-485 +RX        | Input   | CSAT Receive Line                                 |
| В   | RS-485 –RX        | Input   | CSAT Receive Line Complement                      |
| С   | RS-485 TX+        | Output  | CSAT Transmit Line                                |
| D   | RS-485 TX-        | Output  | CSAT Transmit Line Complement                     |
| E   | RS-232 Rd         | Input   | CSAT Receive Line                                 |
| F   | REDUNDANT FAULT   | Input   | Redundant Controller Status Input                 |
| G   | RS-232 Td         | Output  | CSAT Transmit Line                                |
| Н   | AUXCOM Rd         | Input   | Auxiliary RS232 Rd used with Redundant Controller |
| J   | AUXCOM Td         | Output  | Auxiliary RS232 Td used with Redundant Controller |
| K   | FAULT COMMON      | Output  |                                                   |
| L   | FAULT NORM OPEN   | Output  | Open (OK) / Short (Fault)                         |
| M   | FAULT NORM CLOSED | Output  | Short (OK) / Open (Fault)                         |
| N   | ADDRESS SELECT    | Input   | Redundant Addressing                              |
| Р   | ONLINE STATUS     | Input   | Input from Redundant Controller                   |
| R   | +24V AUX          | Output  | 24V output to power Redundant Controller          |
| S   | REDUNDANCY        | Input   | Open (stand-alone) / Gnd (Redundancy)             |
| Т   | GROUND            | Passive |                                                   |
| U   | GROUND            | Passive |                                                   |
| V   | NO CONNECT        |         |                                                   |

## **Chapter 4. SYSTEM OPERATION**

## 4.1 Turning On the CSAT

The CSAT does not contain a 'Power On/Off' switch. The CSAT is powered ON by connecting the J3 "AC Power" connector to the appropriate prime power source. See Section 1 for detailed requirements for the 'prime power source'.



Never turn the unit ON without proper waveguide termination on the J2 "RF OUTPUT" port. Individuals can be exposed to dangerously high electromagnetic levels.

In addition, when directly connecting the CSAT to Laboratory Test Equipment, a DC block should be used between the J7 'RF IN' port and RF test source. The reason for this is that the CSAT can be configured to supply an 11Vdc, 400 milliamp, LNA Current Source output on this port. The DC block will protect any test equipment connected directly to J7.

## 4.2 Configuring the CSAT

The CSAT is a complete RF Downconverter Terminal, RF Upconverter Terminal, and RF High Power Amplifier (HPA) in a single weather safe package. The following paragraphs define the meaning and use of all of the controllable parameters of the CSAT.

## 4.2.1 Frequency

Both the Receiver frequency and the Transmitter frequency are user configurable. The receiver frequency can be selected to any frequency divisible by either 1.0 MHz or 2.5 MHz in the valid Rx frequency range. The transmitter frequency can be selected to any frequency divisible by either 1.0 MHz or 2.5 MHz in the valid Tx frequency range.

Associated Remote Command(s): DFQ= , UFQ=

Example(s): DFQ=3720.0, UFQ=6137.0

## 4.2.2 Attenuation

Both the Receiver attenuation and the Transmitter attenuation are user configurable. The receiver attenuation can be selected between 00.00 and 25.00 dB in 0.25 dB increments. The transmitter attenuation can be selected between 00.00 and 25.00 dB in 0.25 dB increments.

Associated Remote Command(s): DAT=, UAT=

Example(s): DAT=04.25, UAT=11.50

## 4.2.3 Gain Offset

Both the Receiver and the Transmitter Gain Offsets is user configurable. The Gain Offsets are only used in redundant configurations. The user can use these parameters to adjust for gain difference between two CSAT Transceivers used in a 1:1 redundant configuration. The offset can be selected between 0.00 and – 4.00 dB in 0.25 dB increments.

Associated Remote Command(s): DGO=, UGO=

Example(s): DGO= -1.75, UGO=1.00

### 4.2.4 Mute Mode

The CSAT offers two operating modes with regards to frequency changes and unit muting. The two modes are; 'muted after frequency change' and 'unmuted after frequency change'.

- If the Mute Mode is set to '1', the firmware will leave the IF or RF muted following a change to either the Downconverter Frequency or Upconverter Frequency respectively. The operator can then 'unmute' the unit using the commands in the next section.
- If the Mute Mode is set to '0', the firmware will automatically 'unmute' the IF or RF following a change to the Downconverter Frequency or Upconverter Frequency respectively. This assumes that the unit was 'unmuted' prior to the frequency change and that there are no faults following the change. The factory default for this mode is '1'.

Associated Remote Command(s): MUT= Example(s): MUT=0

#### 4.2.5 Mute

The output state of both the Receiver and the Transmitter are user controllable. The receiver output state (the 'IF IN' port, J1) will be ON only if the following two requirements are met:

- The receiver hardware must be fault free (i.e., No Synthesizer or IFLO faults).
- The receiver shall be unmuted (i.e., DMU=0).

The transmitter output state (the 'RF OUT' port, J2) will be ON only if the following three requirements are met:

- The transmitter hardware shall be fault free (i.e., No Synthesizer or IFLO faults).
- The transmitter must be unmuted (i.e., UMU=0).
- The transmitter Amplifier shall be ON (i.e., AMP=1).

Associated Remote Command(s): DMU=, UMU= Example(s): DMU=0, UMU=0

## 4.2.6 Tx Amplifier

The Tx amplifier ON/OFF state is user controllable. Turning the Tx amplifier OFF removes the 10Vdc supply to the RF Power FETs. The TX Amplifier must be ON in order for the CSAT to transmit a RF signal.

Associated Remote Command(s): AMP= Example(s): AMP=1

## 4.2.7 Channel Slope Adjust Mode

Comtech EF Data's CSAT transceivers provide two operating modes for the Receiver IF and Transmitter RF output channel slopes; 'Calibrated' and 'Manual' modes.

- In Calibrated mode, the CSAT firmware uses a calibration 'lookup' table based on the selected frequency to determine the optimum channel slope setting.
- In Manual mode, the customer adjusts the channel slope using the DSA and USA commands defined in the next section.

Associated Remote Command(s): DSM=, USM= Example(s): DSM=1, USM=1

## 4.2.8 Channel Slope Adjust

Both the Rx IF output and the Tx RF output channel slopes are user controllable.

- The receiver channel slope can be varied for approximately 2dB of positive slope. The parameter for controlling this is the 'Down Slope Adjust', which can be varied from 0.0 to 1.0 in 0.1 steps. The default setting is 0.0 and is the value used when the channel flatness is tuned and tested in the factory. 1.0 corresponds to approximately 2dB of positive slope.
- The transmit channel slope can be varied for approximately 2dB of positive slope. The parameter for controlling this is the 'Up Slope Adjust', which can be varied from 0.0 to 1.0 in 0.1 steps. The default setting is 0.0 and is the value used when the channel flatness is tuned and tested in the factory. 1.0 corresponds to approximately 2dB of positive slope.

Associated Remote Command(s): DSA=, USA= Example(s): DSA=0.0, USA=0.8

## 4.2.9 Reference Frequency Adjust

A manual, fine adjustment of the internal 10MHz reference frequency is provided as a user controllable parameter. This parameter can be varied within the range 000 to 255, with the factory default setting at 087. Varying this parameter from 000 to 255 will result in a change of approximately 6.5 kHz and 4.0kHz at the RF and IF output ports respectively.

Associated Remote Command(s): REF= Example(s): REF=087

## 4.2.10 External Reference Fault Logic

The CSAT allows the user to select whether or not the summary fault relay is activated if the internal 10MHz reference loses lock with the external reference attached to 'EXTERNAL REF IN port' J4.

(The factory default is 0)

Associated Remote Command(s): XRF= Example(s): XRF=0

#### 4.2.11 Cold Start Function

The CSAT provides an optional 'Cold Start' feature that will ensure that the internal 10MHz reference signal is at a stable temperature prior to allowing the RF and IF outputs to be turned ON. A fixed cold start interval of 15 minutes is used.

- If 'Cold Start' is ON when the CSAT is powered ON, the IF and RF outputs will remain muted for 15 minutes even if all the conditions defined in 3.3.4 are satisfied. At the end of the 15-minute interval, the RF and IF output will automatically be turned ON if the conditions of 3.3.4 are met.
- If a CSAT was powered ON with 'Cold Start ON', the operator can override this function by setting 'Cold Start OFF'.

Associated Remote Command(s): CLD= Example(s): CLD=1

# 4.2.12 Auto Fault Recovery

This parameter defines how the CSAT responds to momentary fault conditions.

- If 'Auto Fault Recovery' is OFF and a fault condition occurs, that causes either the RF or IF output to be muted, then that fault condition clears, the CSAT will remain muted. In this mode, operator intervention is necessary to return the CSAT to normal operating mode.
- If 'Auto Fault Recovery' is ON and the same situation occurs, the CSAT will automatically be unmuted and return to normal operating mode. To protect against repetitive, momentary faults, if the CSAT experiences five occurrences of the same fault, the 'Auto Fault Recovery' parameter will automatically be set to OFF.

Example: If the Upconverter IFLO synthesizer goes unlocked and starts sweeping while Auto Fault Recovery is ON, the CSAT would see a unlocked / locked condition at the sweep rate of the IFLO synthesizer. After the 5th occurrence, the firmware will set Auto Fault Recovery to OFF and keep the CSAT RF output muted.

Associated Remote Command(s): AFR= Example(s): AFR=1

#### 4.2.13 LNA Current Source

The CSAT has the circuitry necessary to source current, at 11 Vdc, up the 'RF IN port' J7, to power a LNA. This current source can be turned ON/OFF via the user. This source is capable of providing up to 400 mA.



Never turn the unit ON without proper waveguide termination on the J2 "RF OUTPUT" port. Individuals can be exposed to dangerously high electromagnetic levels.



Exercise care when directly connecting the CSAT to Laboratory Test Equipment. A DC block should be used between the J7 "RF IN" port and RF test source to protect the test equipment in case the source is accidentally turned ON. (The factory default is OFF).

Associated Remote Command(s): LCS= Example(s): LCS=1

#### 4.2.14 LNA Current Calibration and Current Window

The CSAT provides the capability to monitor the LNA current when configured to supply current to a LNA. In addition, an adjustable window detect for the LNA current is provided. After attaching the LNA and turning on the current source, the user can 'Calibrate' the current and set a window from  $\pm 20\%$  to  $\pm 50\%$  to trigger an alarm. The user can disable the 'window detect' feature by setting the window value to  $\pm 99\%$ . (The factory default is 99.)

Associated Remote Command(s): CAL=, LCW= Example(s): CAL=, LCW=40

# 4.2.15 LNA Fault Logic

The CSAT allows the user to select whether or not the summary fault relay is activated if the LNA current moves out the prescribed window. This allows the user to control whether or not the redundancy controller will switch on a LNA current alarm in the redundant configuration. (The factory default is 0.)

Associated Remote Command(s): LFL= Example(s): LFL=0

## 4.2.16 Redundancy Controller Auto/Manual

The Operating mode of the Comtech EF Data Redundant Switch Unit (RSU-5060) can be set via a command to the ONLINE CSAT. The RSU-5060 initializes to the AUTO mode when power is first applied.

- In AUTO mode the RSU-5060 monitors the state of the two CSATs and will automatically switch the OFFLINE unit online if the ONLINE unit faults.
- In MANUAL mode, the RSU-5060 will only switch the position of the Tx and Rx transfer switches when commanded to do so via either the RTG= command or via Pin V on the 'M&C Control' connector (J5) on the RSU-5060. The user sets AUTO mode by sending a '1' in the data field and MANUAL mode with a '0' in the data field.

Associated Remote Command(s): RAM= Example(s): RAM=1

# 4.2.17 Redundancy Controller Toggle

The User can cause the RSU-5060 Redundant Switch Unit to switch the position of both the Tx and Rx transfer switches using this command.

- If the RSU-5060 is in AUTO mode, the command will only cause a switchover if the OFFLINE unit is currently UNFAULTED.
- If the RSU-5060 is in MANUAL mode, the command will cause a switchover independent of the state of the OFFLINE unit.

Associated Remote Command(s): RTG= Example(s): RTG=

# 4.2.18 Set Physical Address

The Remote (Physical) address to which the CSAT will respond can be set to any value between 0001 and 9999. (The factory default is 0001)

Associated Remote Command(s): SPA=
Example(s): SPA=0001

#### 4.2.19 Set Baud Rate

The Baud Rate of the communication port, J5, can be set to any values shown below:

1200, 2400, 4800, 9600, 19200, 38400 (The factory default is 9600)

Associated Remote Command(s): SBR= Example(s): SBR=9600

#### 4.2.20 Set Date

The CSAT contains a battery powered Real Time Clock (RTC) used to provide Date/Time stamping of events, alarms and faults. The date can be changed by the user.

Associated Remote Command(s): DAY=

Example(s): DAY=042900

#### 4.2.21 Set Time

The CSAT contains a battery powered Real Time Clock (RTC) used to provide Date/Time stamping of events, alarms and faults. The time can be changed by the user.

Associated Remote Command(s): TIM=

Example(s): TIM=231259

# **Chapter 5. REDUNDANT SYSTEMS**

The C-Band Transceiver is capable of operating in both stand-alone and redundant configurations. The CSAT fully redundant system provides automatic detection, switching, and status for both its configuration and health. The system is designed such that stand-alone operation is a functional sub-set of the fully redundant CSAT system. This provides the user with transparent functionality regardless of the mode or complexity in which the system has been setup to operate.



Due to the parallel nature of the M&C interface, only RS-485 and RS-422 communications are supported through this device.

# 5.1 Redundant System

Figure 5-1 provides a block diagram for a typical CSAT redundant system.

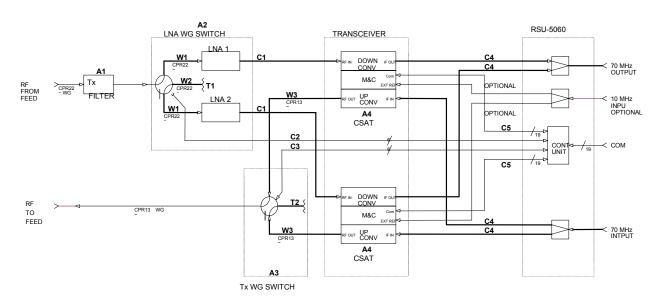



Figure 5-1. Typical CSAT Redundant System

# 5.1.1 RSU-5060 INTERFACES

#### 5.1.1.1 Electrical Interface

The RSU-5060 contains five primary electrical control interface connectors, (J1 through J5) and six IF signal connectors (J6 through J11).

Table 5-1. RSU-5060 Interface Connectors

| Connector | Function                            | Connector Type |
|-----------|-------------------------------------|----------------|
| J1        | CSAT Unit A interface               | MS3112E14-19S  |
| J2        | Rx Waveguide Switch interface       | MS3112E10-6S   |
| J3        | CSAT Unit B interface               | MS3112E14-19S  |
| J4        | Tx Waveguide Switch interface       | MS3112E10-6S   |
| J5        | Customer M&C interface              | MS3112E14-19S  |
| J6        | Tx IF Input from Customer Equipment | Type N, Female |
| J7        | Tx IF Output to CSAT A              | Type N, Female |
| J8        | Tx IF Output to CSAT B              | Type N, Female |
| J9        | Rx IF Output to Customer Equipment  | Type N, Female |
| J10       | Rx IF Input from CSAT A             | Type N, Female |
| J11       | Rx IF Input from CSAT B             | Type N, Female |

# 5.1.1.2 CSAT Unit A Interface, J1

The J1 interface connector (19-pin) provides the communications and control signals as well as the +24 VDC power signal necessary between CSAT Unit A and the RSU-5060.

Table 5-2. CSAT A Signal Description (Connector J1)

| Pin | Signal Name     | Туре      | Description                             |
|-----|-----------------|-----------|-----------------------------------------|
| Α   | RS485 RX+       | Pass-thru | RS-485 Rx+, From M&C to CSAT Unit A     |
| В   | RS485 RX-       | Pass-thru | RS-485 Rx-, From M&C to CSAT Unit A     |
| С   | RS485 TX+       | Pass-thru | RS-485 Tx+, To M&C from CSAT Unit A     |
| D   | RS485 TX-       | Pass-thru | RS-485 Tx-, To M&C from CSAT Unit A     |
| E   | n.c.            |           |                                         |
| F   | REDUND_FLT*     | Output    | Fault Signal to CSAT A from RSU-5060    |
| G   | n.c.            |           |                                         |
| Н   | AUXCOM_RD       | Output    | RS232 from RSU-5060 to CSAT A           |
| J   | AUXCOM_TD       | Input     | RS232 from CSAT A to RSU-5060           |
| K   | FAULT COMMON    | Output    |                                         |
| L   | CSAT A FLT - NO | Input     | Shorted to Pin K = O.K., open = Faulted |
| M   | n.c.            |           |                                         |
| N   | n.c.            |           |                                         |
| Р   | POSITION A*     | Output    | Ground = A Online, Open = A Offline     |
| R   | A +24V          | Input     | +24VDC input power                      |
| S   | REDUNDANCY A*   | Output    | Ground signal to CSAT A                 |
| Т   | GROUND          | Passive   |                                         |
| U   | GROUND          | Passive   |                                         |
| V   | n.c.            |           |                                         |

# 5.1.1.3 Rx Waveguide Switch interface, J2

The J2 interface connector (6-pin) provides the control and indicator signals between the Rx Waveguide Switch and the RSU-5060.

Table 5-3. Rx Waveguide Switch Signal Description (Connector J2)

| Pin | Signal Name     | Type    | Description                            |
|-----|-----------------|---------|----------------------------------------|
| Α   | POS A CMD       | Output  | 24 VDC, 350 millisecond, Command Pulse |
| В   | CMD RETURN      | Passive | Grounded internal to RSU-5060          |
| С   | POS B CMD       | Output  | 24 VDC, 350 millisecond, Command Pulse |
| D   | POS A INDICATOR | Input   | Shorted to Pin E = POSITION A          |
| E   | IND COMMON      | Passive | Grounded internal to RSU-5060          |
| F   | POS B INDICATOR | Input   | Shorted to Pin E = POSITION B          |

# 5.1.1.4 CSAT Unit B Interface, J3

The J3 interface connector (19-pin) provides the communications and control signals as well as the +24 VDC power signal necessary between CSAT Unit B and the RSU-5060.

Table 5-4. CSAT B Signal Description (Connector J3)

| Pin | Signal Name     | Type      | Description                             |
|-----|-----------------|-----------|-----------------------------------------|
| Α   | RS485 RX+       | Pass-thru | RS-485 Rx+, From M&C to CSAT Unit B     |
| В   | RS485 RX-       | Pass-thru | RS-485 Rx-, From M&C to CSAT Unit B     |
| С   | RS485 TX+       | Pass-thru | RS-485 Tx+, To M&C from CSAT Unit B     |
| D   | RS485 TX-       | Pass-thru | RS-485 Tx-, To M&C from CSAT Unit B     |
| E   | n.c.            |           |                                         |
| F   | REDUND_FLT*     | Output    | Fault Signal to CSAT B from RSU-5060    |
| G   | n.c.            |           |                                         |
| Н   | AUXCOM_RD       | Output    | RS232 from RSU-5060 to CSAT B           |
| J   | AUXCOM_TD       | Input     | RS232 from CSAT B to RSU-5060           |
| K   | FAULT COMMON    | Output    |                                         |
| L   | CSAT B FLT – NO | Input     | Shorted to Pin K = O.K., open = Faulted |
| M   | n.c.            |           |                                         |
| N   | B SELECT*       | Output    | Ground signal to CSAT B                 |
| Р   | POSITION B*     | Output    | Ground = B Online, Open = B Offline     |
| R   | B +24V          | Input     | +24VDC input power                      |
| S   | REDUNDANCY B*   | Output    | Ground signal to CSAT B                 |
| Т   | GROUND          | Passive   |                                         |
| U   | GROUND          | Passive   |                                         |
| V   | n.c.            |           |                                         |

# 5.1.1.5 Tx Waveguide Switch interface, J4

The J4 interface connector (6-pin) provides the control and indicator signals between the Tx Waveguide Switch and the RSU-5060.

Table 5-5. Tx Waveguide Switch Signal Description (Connector J4)

| Pin | Signal Name     | Type    | Description                            |
|-----|-----------------|---------|----------------------------------------|
| Α   | POS A CMD       | Output  | 24 VDC, 350 millisecond, Command Pulse |
| В   | CMD RETURN      | Passive | Grounded internal to RSU-5060          |
| С   | POS B CMD       | Output  | 24 VDC, 350 millisecond, Command Pulse |
| D   | POS A INDICATOR | Input   | Shorted to Pin E = POSITION A          |
| E   | IND COMMON      | Passive | Grounded internal to RSU-5060          |
| F   | POS B INDICATOR | Input   | Shorted to Pin E = POSITION B          |

# **5.1.1.6 M&C Interface**, **J5**

The J5 interface connector (19-pin) provides the communications and control signals between the RSU-5060 and the customer M&C system.

Table 5-6. M&C Signal Description (Connector J5)

| Pin | Signal Name     | Type      | Description                            |
|-----|-----------------|-----------|----------------------------------------|
| Α   | RS485 RX+       | Pass-thru | RS-485 Rx+, From M&C to CSAT A&B       |
| В   | RS485 RX-       | Pass-thru | RS-485 Rx-, From M&C to CSAT A&B       |
| С   | RS485 TX+       | Pass-thru | RS-485 Tx+, To M&C from CSAT A&B       |
| D   | RS485 TX-       | Pass-thru | RS-485 Tx-, To M&C from CSAT A&B       |
| E   | B ONLINE CLOSED | Output    | Shorted to Pin K = CSAT B Online       |
| F   | n.c.            |           |                                        |
| G   | n.c.            |           |                                        |
| Н   | n.c.            |           |                                        |
| J   | n.c.            |           |                                        |
| K   | IND/FLT COMMON  | Input     |                                        |
| L   | A FAULT OPEN    | Output    | Shorted to Pin K = CSAT A Faulted      |
| M   | B FAULT OPEN    | Output    | Shorted to Pin K = CSAT B Faulted      |
| N   | n.c.            |           |                                        |
| Р   | RED AUTO/MAN    | Input     | Ground = Manual, Open = Auto           |
| R   | n.c.            |           |                                        |
| S   | A ONLINE CLOSED | Output    | Shorted to Pin K = CSAT A Online       |
| Т   | GROUND          | Passive   |                                        |
| U   | GROUND          | Passive   |                                        |
| V   | SWITCH CMD      | Input     | Momentary short to GND, otherwise OPEN |

# **5.1.1.7** Tx IF Interfaces, J6, J7, and J8

The Tx IF input signal is fed from the customer's equipment to the RSU-5060 at connector J6. The RSU-5060 contains a power splitter which feeds the IF input signal to both CSAT A and CSAT B via the J7 and J8 connectors. The IF power at J7 and J8 will nominally be 3dBm less than the IF input power at J6.

#### 5.1.1.8 Rx IF Interfaces, J9 – J11

The Rx IF output signal is fed to the customer's equipment from the RSU-5060 at connector J9. The RSU-5060 contains a power combiner which takes the IF input signals from both CSAT A and CSAT B via the J10 and J11 connectors and provides a single output signal at J9. The IF output power at J9 will nominally be 3dBm less than the IF input power at either J10 or J11.

#### 5.1.2 Mechanical Interface

The RSU-5060 is housed in a weather resistant, sealed aluminum housing with five external circular connectors and six Female N-Type connectors. The mechanical dimensions and mounting interface are shown in Chapter 2.

# 5.2 RSU-5060 Operation

The RSU-5060 is designed to provide single-point control for both the Tx and Rx transfer switches (Waveguide Switches). In addition, the RSU-5060 provides the customer with a single interface connection to the M&C system. Through this interface the customer can access and control all configuration, monitor and faults status parameters of both CSAT's. The RSU-5060 is a 'smart box'; the unit contains a microcontroller running algorithms to process status and command information from the two CSAT's and control the Tx and Rx waveguide switches accordingly. A functional block diagram of the RSU-5060 is shown in Figure 5-2.

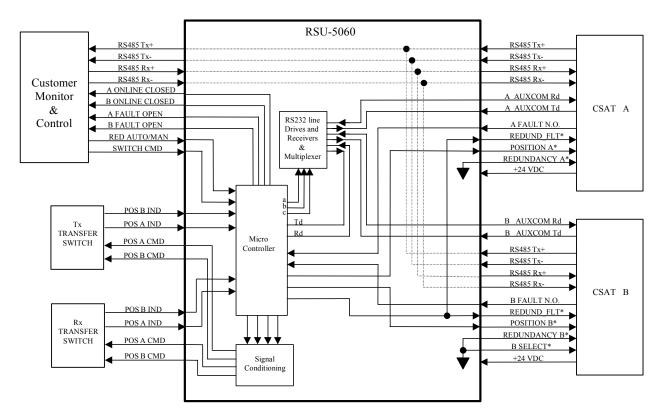



Figure 5-2 RSU-5060 Functional Block Diagram

#### 5.2.1 RS-485 Interface

The RSU-5060 provides a single point interface for the customer's M&C system by pig tailing the 4-wire RS-485 input to J5 and passing it out on both the J1 and J3 interface connectors. When using the RS-485, 4-wire interface to talk to the individual CSAT's are addressed at subsequent addresses through the use of the 'B SELECT \*' signal going to CSAT B on the J3 interface connector. To set or change the address of both units, use the SPA=XXXX command defined in sections 3 and 4 in conjunction with the global address 0000.

Example: To set the two CSAT's to addresses 0064 and 0065 send the following command: <0000/SPA=0064'cr'

## 5.2.2 RED AUTO/MANUAL Signal

Pin P on the J5 connector is the 'RED AUTO/MANUAL' input pin. The user can use this signal to control the operating mode of the RSU-5060. If this pin is left open, the RSU-5060 is operated in the AUTO mode. In AUTO mode, the RSU-5060 monitors the state of CSAT A and CSAT B via the 'A/B FAULT N.O.' signals on the J1/J3 connectors. If the ONLINE unit fails, the RSU-5060 will automatically command both the Tx and Rx transfer switches to change position.

**Note:** If the OFFLINE unit also is FAULTED, no switchover will occur.

The 'RED AUTO/MANUAL' signal has a corresponding REMOTE COMMAND, "RAM=X". This command, defined in section 4, can be used to control the operating mode of the RSU-5060 assuming that Pin P is left open. (Note: Grounding Pin P forces the RSU-5060 into MANUAL mode independent of the "RAM=X" remote command.)

#### 5.2.3 SWITCH CMD Signal

Pin V on the J5 connector is the 'SWITCH CMD' input pin. The user can use this signal to command the RSU-5060 to change the position of both the Tx and Rx transfer switches. This pin should normally be left OPEN and momentarily shorted to ground to force a switch over (minimum pulse width for this signal is 100 mS). The RSU-5060 operating mode does effect how it will respond to the 'SWITCH CMD' command.

- If the operating mode is AUTO, a momentary short to ground on Pin V will cause the RSU-5060 to change the position of the Tx and Rx transfer switches **only if** the currently OFFLINE unit is not faulted.
- If the operating mode is MANUAL, a momentary short to ground on Pin V will always cause the RSU-5060 to change the position of the Tx and Rx transfer switches. Like the 'RED AUTO/MANUAL' signal above, the 'SWITCH CMD' also has a corresponding REMOTE COMMAND, "RTG=". This command, defined in Appendix A, has the same effect as a momentary short to ground on Pin V.

# 5.2.4 REDUNDANCY A/B Signals

Pin S on both J1 and J3 connectors are used to tell the CSAT's that they are in a redundant configuration.

# 5.2.5 REDUND\_FLT Signal

Pin F on both J1 and J3 connectors are output signals from the RSU-5060 to the CSAT's to provide status indication to the CSAT's regarding the operating condition of both the RSU-5060 and the two transfer switches. This signal is normally a one-half hertz square wave. If this signal goes away, the ONLINE CSAT will use the AUXCOM (RS232) interface to the RSU-5060 to get more information regarding the problem at hand. This information is available to the user via the "RRS?" query described in section 4.

# 5.2.6 AUXCOM Signals

Pins H and J on both the J1 and J3 connectors are the EIA-232 RD and EIA-232 TD signals respectively. The AUXCOM interface is used solely in conjunction with the RSU-5060, and should not be confused with the 'Customers EIA232' interface available on the CSAT J5 connector (pin E and F). The AUXCOM interface is used by the ONLINE CSAT to ascertain information from the OFFLINE CSAT as well as the RSU-5060.

# **5.3** Configuring A Redundant System

Comtech EF Data's Redundant CSAT system was designed to reduce the workload of a Customer M&C system in two manners.

- First, the RSU-5060 can be configured to automatically monitor the status of the two CSAT's and always keep the unfaulted CSAT ONLINE.
- Second, configuration commands sent to the ONLINE CSAT via the EIA-485 interface are automatically passed along to the OFFLINE CSAT using the AUXCOM interface.

Therefore, if the user wants to change a configuration parameter such as Tx Frequency for the system, the user simply sends the command to the currently ONLINE CSAT and the OFFLINE CSAT will automatically receive the same command. This automatic update feature is true for the following configuration parameters:

- > Transmit Frequency
- ➤ Receive Frequency
- > Transmit Attenuation
- ➤ Receive Attenuation
- ➤ Auto Fault Recovery
- ➤ Cold Start
- In addition to this automatic update feature, the CSAT is designed to sense whether it has gone from being the OFFLINE unit to the ONLINE unit and will automatically perform the following functions if necessary:
- > Turn ON the Transmit Amplifier
- > Turn OFF the Transmit Mute
- ➤ Turn OFF the Receive Mute

This feature allows the user to run the OFFLINE unit with the Power Transistors turned OFF to reduce power consumption if desired. However, it should be noted that approximately a 10 to 20°C (50 to 68°F) change in unit temperature can occur after turning ON the Tx Amplifier and that gain stability during this warm up period will be affected.

| Notes: |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

# **Chapter 6. REMOTE CONTROL**

#### 6.1 Introduction

This document describes the protocol and message repertoire for remote monitor and control of the CSAT outdoor terminal.

The electrical interface is either an RS-485 multi-drop bus (for the control of many devices) or an RS-232 connection (for the control of a single device), and data is transmitted in asynchronous serial form, using ASCII characters. Control and status information is transmitted in packets, of variable length, in accordance with the structure and protocol defined in later sections.

#### 6.1.1 RS-485

The RS-485 interface is provided at the 19-pin circular J5 connector. The interface is a 4-wire RS-485 interface using the pin out shown in the table below. Since a half-duplex communication protocol is used, the +Tx and +Rx as well as the -Tx and -Rx signals can be tied together at the user end to support a 2-wire interface. The RS-485 driver is only active during transmission and is tri-stated when not is use.

Table 6-1. RS-485 Interface

| Pin | Signal Name | I/O     | Notes                         |
|-----|-------------|---------|-------------------------------|
| Α   | RS-485 +Rx  | Input   | CSAT Receive line             |
| В   | RS-485 –Rx  | Input   | CSAT Receive line complement  |
| С   | RS-485 +Tx  | Output  | CSAT Transmit line            |
| D   | RS-485 –Tx  | Output  | CSAT Transmit line complement |
| Т   | Ground      | Passive | ·                             |

#### 6.1.2 RS-232

The RS-232 interface is provided at the 19-pin circular J5 connector. The interface provides the five signals shown in the table below. The CSAT only requires three wires (TD, RD and Ground), the other two signals are provided for terminal equipment that requires RTS/CTS handshaking. The CSAT simply ties these two signals together.

Table 6-2. RS-232 interface

| Pin | Signal Name | I/O     | Notes        |
|-----|-------------|---------|--------------|
| Е   | RS-232 RD   | Input   | CSAT Rx line |
| G   | RS-232 TD   | Output  | CSAT Tx line |
| Т   | Ground      | Passive |              |

#### 6.2 Basic Protocol

Whether in RS-232 or RS-485 mode, all data is transmitted half-duplex as asynchronous serial characters suitable for transmission and reception by a UART. In this case, the asynchronous character format is fixed at:

- 8 data bits
- No parity
- 1 stop bit

The baud rate may vary between 1200 baud and 19,200 baud.

All data is transmitted in framed packets. The master is assumed to be a PC or ASCII dumb terminal, which is controlling the process of monitor and control. The master is the only device that is permitted to initiate the transmission of data. Slaves are only permitted to transmit when they have been specifically instructed to do so by the master.

All bytes within a packet are printable ASCII characters. In this context, the Carriage Return and Line Feed characters are considered printable.

All messages from master to slave require a response (with one exception). This will either be to return data that has been requested by the master, or to acknowledge reception of an instruction to change the configuration of the slave. The exception to this is when the master broadcasts a message (such as Set time/date) using Address 0.

#### 6.2.1 Packet Structure

Table 6-3. Master-to-Slave:

|                 | Start of<br>Packet | Device<br>Address | Address<br>Delimiter | Instruction<br>Code | Code<br>Qualifier | Optional<br>Arguments | End of<br>Packet   |
|-----------------|--------------------|-------------------|----------------------|---------------------|-------------------|-----------------------|--------------------|
| Character       | <                  |                   | 1                    |                     | = or ?            | -                     | Carriage<br>Return |
| ASCII<br>Code   | 60                 |                   | 47                   |                     | 61 or 63          |                       | 13                 |
| #<br>Characters | 1                  | 4                 | 1                    | 3                   | 1                 | n                     | 1                  |

Example: <0135/UAT=12.25{CR}

**Table 6-4. Slave-to-Master:** 

|                 | Start of<br>Packet | Device<br>Address | Address<br>Delimiter | Instruction<br>Code | Code<br>Qualifier   | Optional<br>Arguments | End of Packet                 |
|-----------------|--------------------|-------------------|----------------------|---------------------|---------------------|-----------------------|-------------------------------|
| Character       | >                  |                   | 1                    |                     | =, ?, !, or *       |                       | Carriage Return,<br>Line Feed |
| ASCII<br>Code   | 62                 |                   | 47                   |                     | 61, 63, 33<br>or 42 |                       | 13, 10                        |
| #<br>Characters | 1                  | 4                 | 1                    | 3                   | 1                   | From 0 to<br>n        | 2                             |

Example:  $>0.135/UAT=0.75\{CR\}\{LF\}$ 

#### 6.2.1.1 Start Of Packet

Master to Slave: This is the character: < = (ASCII code 61) Master to Slave: This is the character: > = (ASCII code 62)

Because this is used to provide a reliable indication of the start of packet, these two

characters may not appear anywhere else within the body of the message.

#### 6.2.1.2 Address

Up to 9999 devices can be uniquely addressed. In RS-232 and RS-485 applications, the permissible range of values is 1 to 9999. It is programmed into a slave unit using the Set Physical Address (SPA) command.



The master sends a packet with the address of a slave - the destination of the packet. When the slave responds, the address used is the same address, to indicate to the master the source of the packet. The master does not have its own address.

#### 6.2.1.3 Instruction Code

This is a three-character alphabetic sequence that identifies the subject of the message. Wherever possible, the instruction codes have been chosen to have some significance.

For example UAT for Upconverter attenuation, UFQ for Upconverter Frequency, etc. This aids in the readability of the message, should it be displayed in its raw ASCII form. All commands are case sensitive, only upper case alphabetic characters may be used (A-Z, ASCII codes 65 - 90).

#### 6.2.1.4 Instruction Code Qualifier

This is a single character that further qualifies the preceding instruction code. Code Qualifiers obey the following rules:

- 1. From Master to Slave, the only permitted values are:
  - = (ASCII code 61)
  - ? (ASCII code 63)

They have these meanings:

The = code (master to slave) is used as the assignment operator, and is used to indicate that the parameter defined by the preceding byte should be set to the value of the argument(s) which follow it.

For example, in a message from master to slave, UAT=12.50 would mean set the transmit attenuation to 12.50 dB.

The ? code (master to slave) is used as the query operator, and is used to indicate that the slave should return the current value of the parameter defined by the preceding byte.

For example, in a message from master to slave, 'UAT?' would mean return the current value of the transmit attenuation.

- 2. From Slave to Master, the only permitted values are:
  - = (ASCII code 61)
  - ? (ASCII code 63)
  - ! (ASCII code 33)
  - \* (ASCII code 42)
  - # (ASCII code 35)

#### They have these meanings:

The = code (slave to master) is used in two ways:

- First, if the master has sent a query code to a slave (for example UAT?, meaning what's the Transmit Attenuation?), the slave would respond with UAT=xx.xx, where xx.xx represents the attenuation in question.
- Second, if the master sends an instruction to set a parameter to a particular value, then, providing the value sent in the argument is valid, the slave will acknowledge the message by replying with UAT= (with no message arguments).

The ? code (slave to master) is only used as follows:

- If the master sends an instruction to set a parameter to a particular value, then, if the value sent in the argument is not valid, the slave will acknowledge the message by replying with (for example) with UAT? (with no message arguments).
- This indicates that there was an error in the message sent by the master.

The \* code (slave to master) is only used as follows:

• If the master sends an instruction to set a parameter to a particular value, then, if the value sent in the argument is valid, but the CSAT will not permit that particular parameter to be changed at that time, the slave will acknowledge the message by replying with (for example) with UAT\* (with no message arguments).

The ! code (slave to master) is only used as follows:

• If the master sends an instruction code which the slave does not recognize, the slave will acknowledge the message by echoing the invalid instruction, followed by the ! character. Example: XYZ!

The # code (slave to master) is only used as follows:

• If the master sends an instruction code which the slave cannot currently perform because of hardware resource issues, the slave will acknowledge the message by echoing the invalid instruction, followed by the # character.

This response can only occur if the operator sends two or more 'hardware configuration' type commands without allowing adequate time between commands for the hardware to be configured.

Example: the operator issued commands to change both the Upconverter frequency and the Downconverter frequency with less than 100 milliseconds between commands

• If this response is returned the command has not been accepted and the operator must resend the command.

# 6.2.1.5 Message Arguments

Arguments are not required for all messages. All arguments are ASCII codes for the characters 0 to 9 (ASCII 48 to ASCII 57), period (ASCII 46) and comma (ASCII 44).

#### 6.2.1.6 End Of Packet

Master to Slave: This is the Carriage Return character (ASCII code 13) Slave to Master: This is the two-character sequence Carriage Return, Line Feed. (ASCII code 13, and code 10.)

Both indicate the valid termination of a packet.

# 6.3 Commands or Responses

The commands and responses are provided to assist the technican in monitoring and controlling the unit.

| Parameter<br>Type | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                    | Response to<br>Command<br>(Slave to Master)                       | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)                |
|-------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| TX<br>Frequency   | UFQ=                                              | 6 bytes<br>numerical                                      | Command or Query.  TX Frequency in valid range. Frequency divisible by 1MHz and 2.5 MHz are allowed.  Example: UFQ= 5901.0                      | UFQ= (message ok) UFQ? (received ok, but invalid arguments found) | UFQ?                                            | UFQ=xxxx.x (same format as command arguments)      |
| RX<br>Frequency   | DFQ=                                              | 6 bytes<br>numerical                                      | Command or Query. RX Frequency in valid range. Frequency divisible by 1MHz and 2.5 MHz are allowed. Example: DFQ=3652.5                         | DFQ= (message ok) DFQ? (received ok, but invalid arguments found) | DFQ?                                            | DFQ=xxxx.x (same format as command arguments)      |
| TX<br>Attenuation | UAT=                                              | 5 bytes<br>numerical                                      | Command or Query.  TX Attenuation, in dB, between 00.00 and 25.00.  Resolution = 00.25 dB.  Example: UAT=12.75                                  | UAT= (message ok) UAT? (received ok, but invalid arguments found) | UAT?                                            | UAT=xx.xx<br>(same format as command<br>arguments) |
| RX<br>Attenuation | DAT=                                              | 5 bytes<br>numerical                                      | Command or Query.  RX Attenuation, in dB, between 00.00 and 20.00.  Resolution = 00.25 dB.  Example: DAT=12.75                                  | DAT= (message ok) DAT? (received ok, but invalid arguments found) | DAT?                                            | DAT=xx.xx<br>(same format as command<br>arguments) |
| TX Gain<br>Offset | UGO=                                              | 5 bytes<br>numerical                                      | Command or Query.  TX Gain Offset for 1:1 redundancy configurations. In dB, between -0.00 and -4.00. Resolution = 00.25 dB.  Example: UGO=-1.25 | UGO= (message ok) UGO? (received ok, but invalid arguments found) | UGO?                                            | UGO=xx.xx<br>(same format as command<br>arguments) |
| RX Gain<br>Offset | DGO=                                              | 5 bytes<br>numerical                                      | Command or Query.  RX Gain Offset for 1:1 redundancy configurations. In dB, between -0.00 and -4.00. Resolution = 00.25 dB.  Example: DGO=-1.25 | DGO= (message ok) DGO? (received ok, but invalid arguments found) | DGO?                                            | DGO=xx.xx<br>(same format as command<br>arguments) |
| TX Amplifier      | AMP=                                              | 1 byte,<br>value of<br>0,1                                | Command or Query.  TX Amplifier, where:  0 = Amplifier OFF  1 = Amplifier ON  Example: AMP=1                                                    | AMP= (message ok) AMP? (received ok, but invalid argument found)  | AMP?                                            | AMP=x (same format as command argument)            |

| Parameter<br>Type  | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                 | Response to<br>Command<br>(Slave to Master)                    | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)             |
|--------------------|---------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Mute Mode          | MUT=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  Mute Mode, where:  0 = Unmuted after Frequency change,  1 = Muted after Frequency change.  Example: MUT=1 | MUT=(message ok) MUT?(received ok, but invalid argument found) | MUT?                                            | MUT=x (same format as command argument)         |
| TX Mute            | UMU=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  TX Mute, where:  0 = Transmitter Unmuted,  1 = Transmitter Muted  Example: UMU=1                          | UMU=(message ok) UMU?(received ok, but invalid argument found) | UMU?                                            | UMU=x (same format as command argument)         |
| RX Mute            | DMU=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  RX Mute, where:  0 = Receiver Unmuted,  1 = Receiver Muted  Example: DMU=1                                | DMU=(message ok) DMU?(received ok, but invalid argument found) | DMU?                                            | DMU=x (same format as command argument)         |
| TX Slope<br>Mode   | USM=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  TX Slope Mode, where:  0 =Manual Mode,  1 = Calibrated Mode.  Example: USM=1                              | USM=(message ok) USM?(received ok, But invalid argument found) | USM?                                            | USM=x<br>(same format as command<br>argument)   |
| TX Slope<br>Adjust | USA=                                              | 3 bytes                                                   | Command or Query.  TX Slope Adjust, between 0.0 and 1.0.  Resolution = 0.1.  Example: USA=0.3                                | USA= (message ok) USA? (received ok, but invalid arg. found)   | USA?                                            | USA=x.x<br>(same format as command<br>argument) |
| RX Slope<br>Mode   | DSM=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  RX Slope Mode, where:  0 =Manual Mode,  1 = Calibrated Mode.  Example: DSM=1                              | DSM=(message ok) DSM?(received ok, But invalid argument found) | DSM?                                            | DSM=x (same format as command argument)         |

| Parameter<br>Type                 | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                  | Response to<br>Command<br>(Slave to Master)                                                                           | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)             |
|-----------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| RX Slope<br>Adjust                | DSA=                                              | 3 bytes                                                   | Command or Query.  RX Slope Adjust, between 0.0 and 1.0.  Resolution = 0.1.  Example: DSA=0.3                                                                                 | DSA= (message ok) DSA? (received ok, but invalid arg. found)                                                          | DSA?                                            | DSA=x.x (same format as command argument)       |
| Reference<br>Oscillator<br>Adjust | REF=                                              | 3 bytes                                                   | Command or Query. Ref Osc Adjust, between 000 and 255. Resolution 001. Example: REF=087 Note: REF cannot be adjusted when the CSAT is locked to an external reference source. | REF= (message ok) REF? (received ok, but invalid argument found) REF* (message ok, but not permitted in current mode) | REF?                                            | REF=xxx<br>(same format as command<br>argument) |
| Cold Start                        | CLD=                                              | 1 byte,<br>value of 0,1                                   | Command or Query. Cold Start, where: 0 = Disabled, 1 = Enabled Example: CLD=1                                                                                                 | CLD= (message ok) CLD? (received ok, but invalid arguments found)                                                     | CLD?                                            | CLD=x (same format as command arguments)        |
| Auto Fault<br>Recovery            | AFR=                                              | 1 byte,<br>value of 0,1                                   | Command or Query. Auto Fault Recovery, where: 0 = Disabled, 1 = Enabled Example: AFR=1                                                                                        | AFR= (message ok) AFR? (received ok, but invalid arguments found)                                                     | AFR?                                            | AFR=x (same format as command arguments)        |
| Online<br>Status                  | N/A                                               | 1 byte,<br>value of 0,1                                   | Query Only. Online status, where: 0 = OFFLINE, 1 = ONLINE Example: ONL=1                                                                                                      | ONL= (message ok) ONL? (received ok, but invalid arguments found)                                                     | ONL?                                            | ONL=x (same format as command arguments)        |
| LNA Current<br>Source             | LCS=                                              | 1 byte,<br>value of 0,1                                   | Command or Query. LNA Current Source, where: 0 = Disabled, 1 = Enabled Example: LCS=1                                                                                         | LCS= (message ok) LCS? (received ok, but invalid arguments found)                                                     | LCS?                                            | LCS=x (same format as command arguments)        |

| Parameter<br>Type                    | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                                                                      | Response to<br>Command<br>(Slave to Master)                                | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)             |
|--------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| LNA Fault<br>Logic                   | LFL=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  LFL controls whether or not the Summary Fault Relay (SFR) is affected by the LNA Current window monitor, where:  0 = A LNA Current fault does not effect the SFR,  1 = A LNA Current fault will effect the SFR.  Example: LFL=1                                                                | LFL= (message ok) LFL? (received ok, But invalid arguments found)          | LFL?                                            | LFL=x (same format as command arguments)        |
| Calibrate<br>LNA Current             | CAL=                                              | None                                                      | Command only.  This command is used to set the calibration point for the LNA current alarm feature.  Example: CAL=                                                                                                                                                                                                | CAL= (message ok)                                                          | N/A                                             | N/A                                             |
| LNA Current<br>Window                | LCW=                                              | 2 bytes,<br>numerical                                     | Command or Query. LNA Current Monitor Window, this command allows the user to set the alarm window in $\pm$ % of the calibrated LNA current. Valid inputs are 20 to 50 in increments of 1%. In addition, setting the value to 99 disables the alarm function. Example: LCW=30, set the alarm window at $\pm$ 30%. | LCW= (message ok) LCW? (received ok, but invalid arguments found)          | LCW?                                            | LCW=xx<br>(same format as command<br>arguments) |
| External<br>Reference<br>Fault Logic | XRF=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  XRF controls whether or not the Software monitors the external reference source. If enabled and no source is present a fault will be reported.  0 = Ext Reference not monitored  1 = Ext Reference is monitored and the lock state reported.  Example: XRF=1                                   | XRF= (message ok)<br>XRF? (received ok,<br>but invalid<br>arguments found) | XRF?                                            | XRF=x (same format as command arguments)        |

| Parameter Type  Command (Instruction Code and qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query            | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response to<br>Command<br>(Slave to Master)                       | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)                                                                      |
|----------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| CSAT Global Configuration CGC=                           | 60 bytes, with numerical entries fixed value entries, and delimiters | Command or Query. Global configuration of Unit, in the form: FFFF.FAA.AAMSB.BGG.GGZffff.faa.aamsb.b gg.ggNRCXOOOLWWDeeeeeee, where:  F = TX Frequency - same as UFQ= (6 bytes) A = TX Attenuation - same as UAT= (5 bytes) M = TX Mute - same ad UMU= (1byte) S = TX Slope Mode - same as USM= (1 byte) B = TX Slope Value - same as USA= (3 bytes) G = TX Gain Offset - same as UGO= (5 bytes) Z = TX Amplifier State - same as AMP= (1 byte) f = RX Frequency - same as UFQ= (6 bytes) a = RX Attenuation - same as UAT= (5 bytes) m = RX Mute - same ad UMU= (1byte) s = RX Slope Mode - same as USA= (3 bytes) g = RX Slope Value - same as UGO= (5 bytes) N = Mute Mode - same as UGO= (5 bytes) N = Mute Mode - same as MUT= (1 byte) C = Cold Start Mode - same as AFR= (1 byte) C = Cold Start Mode - same as REF= (1 byte) O = Ref Oscillator Adjust - same as REF= (3 bytes) L = LNA Current Source - same as LCS= (1 byte) W = LNA Current Window - same as LCW= (3 bytes) D = LNA Fualt Logic - same as LFL= (1 byte) e = expansion (7 bytes), set to '0' | CGC= (message ok) CGC? (received ok, But invalid arguments found) | CGC?                                            | CGC= FFFF.FAA.AAMS B.BGG.GGZffff.faa.aams b.bgg.ggNRCXOOOLWWDeeeeee e (same format as command arguments) |

| Parameter<br>Type                                      | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                       | Response to<br>Command<br>(Slave to Master)                                                                           | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)                |
|--------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| Redundancy<br>Controller<br>Box<br>Auto/Manual<br>Mode | RAM=                                              | 1 byte,<br>value of 0,1                                   | Command or Query.  RAM controls whether or not the Redundancy Controller is in automatic or manual mode, where:  0 = Manual Mode,  1 = Auto Mode.  Example: RAM=1  Note: Access via the Online unit.                                               | RAM= (message ok) RAM? (received ok, but invalid arguments found)                                                     | RAM?                                            | RAM= <i>x</i> (same format as command arguments)   |
| Redundancy<br>Controller<br>Box Toggle                 | RTG=                                              | None                                                      | Command only.  RTG= sent to the online CSAT will cause the Redundancy Box to toggle the TX and RX switches.  Example: RTG=                                                                                                                         | RTG= (message ok) RTG? (received ok, but invalid arguments found)                                                     | N/A                                             | N/A                                                |
| Remote<br>Address<br>(Physical<br>Address)             | SPA=                                              | 4 bytes,<br>numerical                                     | Command or Query. Physical Address - between 0001 and 9999. Resolution 0001. Example: SPA=0890                                                                                                                                                     | SPA= (message ok) SPA? (received ok, but invalid arguments found)                                                     | SPA?                                            | SPA=xxxx<br>(same format as command<br>arguments)  |
| Remote<br>Baud rate                                    | SBR=                                              | 4 bytes                                                   | Command or Query. Baud Rate, as follows:  1200 = 1200 baud,  2400 = 2400 baud,  4800 = 4800 baud,  9600 = 9600 baud,  19K2 = 19200 baud.  38K4 = 38400 baud.  Note: Unit responds on the existing baud rate and then changes to the new baud rate. | SBR= (message ok) SBR? (received ok, but invalid arguments found)                                                     | SBR?                                            | SBR=xxxx<br>(same format as command<br>arguments)  |
| Set RTC<br>Date                                        | DAY=                                              | 6 bytes,<br>numerical                                     | A command in the form mmddyy, where; dd = day of the month, between 01 and 31, mm = month of the year, between 01 and 12 and yy = year, between 97 and 96 (1997 to 2000, then 2000 to 2096)  Example: DAY=042457 would be April 24, 2057           | DAY= (message ok) DAY? (received ok, but invalid arguments found) DAY* (message ok, but not permitted in current mode | DAY?                                            | DAY=xxxxxx<br>(same format as command<br>arguments |

| Parameter<br>Type                                                        | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                | Response to<br>Command<br>(Slave to Master)                                                                           | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)                 |
|--------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| Set RTC<br>Time                                                          | TIM=                                              | 6 bytes,<br>numerical                                     | A command in the form hhmmss, indicating the time from midnight, where hh = hours, between 00 and 23; mm = minutes, between 00 and 59, and ss = seconds, between 00 and 59  Example: TIM=231259 would be 23 hours, 12 minutes and 59 seconds from midnight. | TIM= (message ok) TIM? (received ok, but invalid arguments found) TIM* (message ok, but not permitted in current mode | TIM?                                            | TIM=xxxxxx<br>(same format as command<br>arguments  |
| Clear All<br>Stored<br>Alarms                                            | CAA=                                              | None                                                      | Command only Instructs the slave to clear all Stored Events This command takes no arguments.                                                                                                                                                                | CAA= (message ok)                                                                                                     | N/A                                             | N/A                                                 |
| Re-Initialize<br>Retrieved<br>Alarms Point                               | IAP=                                              | None                                                      | Command only Instructs the unit to zero the retrieved alarms pointer to allow the user to retrieve the complete stored alarms log.                                                                                                                          | IAP=(message ok)                                                                                                      | N/A                                             | N/A                                                 |
| List New<br>Alarms<br>(Retrieve<br>next 5<br>unread<br>Stored<br>Alarms) | N/A                                               | 145 bytes                                                 | Query only  CSAT returns the oldest 5 Stored Events that have not yet been read over the remote control. Reply format: Sub-body{CR}Sub-body{CR}Sub-body{CR}Sub-body{CR}Sub-body{CR}Sub-body{CR}Sub-body= YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY               | N/A                                                                                                                   | LNA?                                            | LNA=YYss (see description for details of arguments) |

| Parameter<br>Type                                                            | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                      | Response to<br>Command<br>(Slave to Master)                       | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)                       |
|------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| Total New<br>Alarms<br>(Retrieve<br>Number of<br>unread<br>Stored<br>Alarms) | N/A                                               | 2 bytes,<br>numerical                                     | Query only.  CSAT returns the number of Stored Events which remain unread, in the form xx. Note: This means unread over the remote control – viewing the stored events from the front panel of the modem does not affect this value.  Example reply: TNA=18'cr"If | N/A                                                               | TNA?                                            | TNA=xx (see description for details of arguments)         |
| Retrieve<br>Serial<br>Number                                                 | N/A                                               | 10 bytes,<br>alpha<br>numerical                           | Query only.  Used to Query the units 6 digit serial number.  Slave returns its S/N, in the form Cxxxxxxxxx  Example: RSN=C001234567'cr"If                                                                                                                         | N/A                                                               | RSN?                                            | RSN=Cxxxxxxxxx (see description for details of arguments) |
| Retrieve<br>Equipment<br>Type                                                | N/A                                               | 20 bytes,<br>alpha<br>numerical                           | Query only. CSAT returns a string indicated the Model Number and the value of internal software revision installed Example: RET=CSAT-5060/050 V1.02'cr''lf'                                                                                                       | N/A                                                               | RET?                                            | RET=xx (see description for details of arguments)         |
| Circuit<br>Identification<br>Message                                         | CID=                                              | 24 bytes,<br>alpha<br>numerical                           | Command or Query.  Sets or queries the user-defined Circuit ID string, which is a fixed length of 24 characters.  Valid characters include:  Space ()*+_,./0-9 A-Z                                                                                                | CID= (message ok) CID? (received ok, but invalid arguments found) | CID?                                            | CID=xx (see description for details of arguments)         |

| Parameter<br>Type                   | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                         | Response to<br>Command<br>(Slave to Master) | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)               |
|-------------------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| Retrieve<br>Configuration<br>Status | N/A                                               | 113 bytes,<br>alpha<br>numerical                          | Query only.  Used to Query the configuration status of the CSAT Example: RCS='cr'  UFQ=5845.0'cr'  DFQ=3625.0'cr'  UAT=12.50'cr'  DAT=01.50'cr'  ONL=YES'cr'  XMT=ON'cr'  AMP=ON'cr'  UMU=OFF'cr'  RCV=ON'cr'  DMU=OFF'cr'  CLD=OFF'cr'  AFR=ON'cr'  EXT=NO 'cr''If' | N/A                                         | RCS?                                            | RCS=xx (see description for details of arguments) |
| Retrieve LNA<br>Status              | N/A                                               | 23 bytes,<br>alpha<br>numerical                           | Query only. Used to Query the LNA status of the CSAT Example: RLS='cr'  LCS=ON'cr'  LCW=40'cr'  LFL=1'cr''lf'                                                                                                                                                        | N/A                                         | RLS?                                            | RLS=xx (see description for details of arguments) |
| Retrieve<br>Utility Status          | N/A                                               | 32 bytes,<br>alpha<br>numerical                           | Query only. Used to Query the utility status of the CSAT Example: RUS='cr' BDR=9600'cr' REF=087'cr' USA=0.3'cr' DSA=0.4'cr''lf'                                                                                                                                      | N/A                                         | RUS?                                            | RUS=xx (see description for details of arguments) |

| Parameter<br>Type                 | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                                                                                                       | Response to<br>Command<br>(Slave to Master) | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)               |
|-----------------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| Retrieve<br>Redundancy<br>Status  | N/A                                               | 37 bytes,<br>alpha<br>numerical                           | Query only. Used to Query the utility status of the CSAT Example: RRS='cr' R 5V=5.0'cr' R 12V=11.8'cr' TX SW=OK'cr' RX SW=OK'cr''lf' Note: Access via Online unit.                                                                                                                                                                                 | N/A                                         | RRS?                                            | RRS=xx (see description for details of arguments) |
| Retrieve<br>Maintenance<br>Status | N/A                                               | 175 bytes,<br>alpha<br>numerical                          | Query only. Used to Query the maintenance status of the CSAT Example: RMS='cr'  24VT=023.9'cr'  20VT=020.3'cr'  12VT=012.0'cr'  10VT=010.2'cr'  P5VT=005.0'cr'  N5VT=-05.0'cr'  USYN=008.2'cr'  UIFL=003.9'cr'  DSYN=006.3'cr'  DIFL=003.8'cr'  REFV=002.9'cr'  LNAC=081.9'cr'  FANC=541.0'cr'  UTMP= 37.0'cr'  POWR=25.0-'cr'  DTMP= 34.0'cr''lf' | N/A                                         | RMS?                                            | RMS=xx (see description for details of arguments) |

| Parameter<br>Type        | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                                                                              | Response to<br>Command<br>(Slave to Master) | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)               |
|--------------------------|---------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| Retrieve<br>Alarm Status | N/A                                               | 171 bytes, text                                           | Query only. Used to Query the Alarm status of the CSAT Example: RAS='cr'  24VLT=OK'cr'  20VLT=OK'cr'  12VLT=OK'cr'  10VLT=OK'cr'  P5VLT=OK'cr'  N5VLT=OK'cr'  USYNH=OK'cr'  USYNH=OK'cr'  UIFLO=OK'cr'  DSYNH=OK'cr'  REFLD=OK'cr'  REFLD=OK'cr'  FANMN=OK'cr'  HSTMP=OK'cr'  SHTDN=OK'cr'  CHKSM=OK'cr'  REDSW=OK'cr'If' | N/A                                         | RAS?                                            | RAS=xx (see description for details of arguments) |

| Parameter<br>Type                  | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response to<br>Command<br>(Slave to Master) | Query<br>(Instruction<br>code and<br>qualifier) | Response to query (Slave to Master)               |
|------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| Concise<br>Configuration<br>Status | N/A                                               | 31 bytes,<br>alpha<br>numerical                           | Query only. Used to Query the Configuration status of the CSAT Example: CCS=uuuu.udddd.daa.aabb.bbotamrncfx'cr''lf' where:  uuuu.u = TX frequency dddd.d = RX frequency aa.aa = TX attenuation bb.bb = RX attenuation o = online status, 0 = OFFLINE, 1 = ONLINE t = transmitter status, 0 = OFF, 1 = ON a = amplifier status, 0 = OFF, 1 = ON m = TX mute status, 0 = Unmuted, 1 = Muted r = receiver status, 0 = OFF, 1 = ON n = RX mute status, 0 = Unmuted, 1 = Muted c = cold start, 0 = Disabled, 1 = Enabled f = auto fault recover, 0 = Disabled, 1 = Enabled x = external reference present, 0 = NO, 1 = YES | N/A                                         | CCS?                                            | CCS=xx (see description for details of arguments) |
| Concise LNA<br>Status              | N/A                                               | 4 bytes,<br>alpha<br>numerical                            | Query only. Used to Query the LNA status of the CSAT Example: CLS=abbc'cr''lf' where:  a = LNA Current 0=OFF, 1=ON bb = Current window in % c = LNA Fault Logic 0=OFF, 1=ON                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                         | CLS?                                            | CLS=xx (see description for details of arguments) |

| Parameter<br>Type                | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Response to<br>Command<br>(Slave to Master) | Query (Instruction code and qualifier) | Response to query (Slave to Master)               |
|----------------------------------|---------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------------------|
| Concise<br>Utility Status        | N/A                                               | 10 bytes,<br>alpha<br>numerical                           | Query only. Used to Query the Utility status of the CSAT Example: CUS=brrru.ud.d'cr"lf' where: b = baud rate, 1 = 1200, 2 = 2400, 3 = 4800, 4 = 9600, and 5 = 19200 rrr = reference adjust u.u = Up converter slope adjust d.d = Down converter slope adjust                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                         | CUS?                                   | CUS=xx (see description for details of arguments) |
| Concise<br>Maintenance<br>Status | N/A                                               | 80 bytes, numerical                                       | Query only.  Used to Query the Maintenance status of the CSAT  Example: CMS=aaa.abbb.bccc.cddd.deee.e  fff.fggg.ghhh.hiii.ijjj.jkkk.klll.lmmm.m nnn.nooo.oppp.p'cr''lf'  where:  aaa.a = 24V Power Supply bbb.b = 20V Power Supply ccc.c = 12V Power Supply ddd.d = 10V Power Supply eee.e = +5V Power Supply ggg.g = TX Synthesizer Tuning Voltage hhh.h = TX IFLO Tuning Voltage iii.i = RX Synthesizer Tuning Voltage iii.i = RX Synthesizer Tuning Voltage lil.l = LNA Current in milliamps mmm.m = Fan Current in milliamps nnn.n = Up Conv Heat Sink Temperature ooo.o = RF Output Power in dB ppp.p = Down Converter Temperature  Note: Value is xxx.x if not available | N/A                                         | CMS?                                   | CMS=xx (see description for details of arguments) |

| Parameter<br>Type       | Command<br>(Instruction<br>Code and<br>qualifier) | Arguments<br>for<br>Command<br>or<br>Response<br>to Query | Description of arguments  Note that all arguments are ASCII numeric codes between 48 and 57.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Response to<br>Command<br>(Slave to Master) | Query<br>(Instruction<br>code and<br>qualifier) | Response to query<br>(Slave to Master)            |
|-------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| Concise<br>Alarm Status | N/A                                               | 19 bytes, numerical                                       | Query only. Used to Query the Alarm status of the CSAT Example: CMS=abcdefghijklmnopqr'cr'lf' where: a thru n = 0 or 1, 0 = OK 1 = FT a = 24V Power Supply Alarm b = 20V Power Supply Alarm c = 12V Power Supply Alarm d = 10V Power Supply Alarm e = +5V Power Supply Alarm f = -5V Power Supply Alarm g = TX Synthesizer Lock Detect Alarm h = TX IFLO Lock Detect Alarm I = RX Synthesizer Lock Detect Alarm j = RX IFLO Lock Detect Alarm k = Reference Lock Detect Alarm l = LNA Current Alarm m = Fan Current Alarm n = Temperature Alarm o = HPA Thermal Shutdown Alarm p = Internal IIC-bus Alarm q = EEPROM checksum Alarm r = NVRAM/RTC Low Battery Alarm s = Redundancy switch alarm | N/A                                         | CAS?                                            | CAS=xx (see description for details of arguments) |
| Summary<br>Fault Status | N/A                                               | 1 byte,<br>alpha<br>numerical                             | Query only. Used to Query the status of the CSAT Summary Fault Relay. Example: SFS=0'cr''lf' where: 0 = OK 1 = FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                         | SFS?                                            | SFS=x (see description for details of arguments)  |

# Chapter 7. MAINTENANCE AND TROUBLESHOOTING

This chapter is intended to provide procedures to assist operator and maintenance personnel in the checkout, maintenance and troubleshooting of the CSAT. Comtech EF Data recommends that spare replacement CSATs be used to replace CSATs removed from the system for maintenance. The input and output signals, the interconnecting cables and the location of the modules are as shown in Figure 7-1.

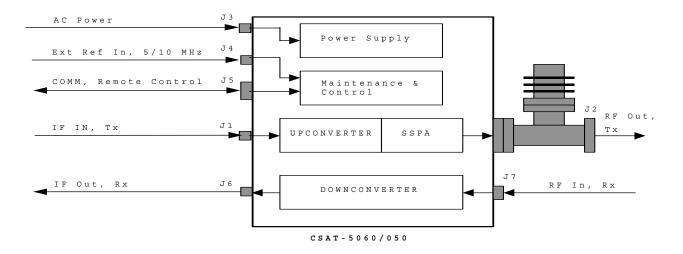



Figure 7-1. Converter Signal and Interconnecting Cable Diagram

# 7.1 Maintenance Testing

Use the instructions for installing the appropriate CSAT (refer to Appendix A, B, or C) for checkout, and the procedures in Chapter 4, for operating the CSAT.

- 1. The CSAT contains an Upconverter, a Solid-State Power Amplifier (SSPA) and a Downconverter.
- 2. The Upconverter translates the IF input frequency of 52 to 88 MHz to an RF frequency of 5845 to 6425 MHz depending on the setting for the output frequency.
- 3. The IF input level is -20 to -30 dBm (typical). The signal is then amplified by the SSPA to the desired output level (100W only:  $\geq$  +50 dBm at 1 dB compression).
- 4. The Downconverter translates the RF input signal down to the IF output frequency of 52 to 88 MHz.
- 5. The RF input level is -45 dBm (typical), and the IF output level is +20 dBm at 1 dB compression.

#### 7.2 Troubleshooting

CSAT operating problems can be identified by first observing the status indicators through the Communications port. When a fault condition is indicated, using the Retrieve Alarm Status (RAS) command can identify the specific fault, or faults. The status of all CSAT functions will be displayed as described in Chapter 6 (see the Retrieve Alarm Status commands).

#### 7.3 Converter Faults

Check the Alarm Status for possible faults, or an indication of a marginal performance tolerance condition.

10 VDC

# 7.3.1 DC Power Supply Voltages

| 24 VDC | 10 VDC          |
|--------|-----------------|
| 20 VDC | P5 VDC (+5 VDC) |
| 12 VDC | N5 VDC (-5 VDC) |

24 VDC

A fault ("FT") indicates a voltage level exceeding  $\pm 10\%$  of the power supply voltage. If the voltage exceeds  $\pm 10\%$ , contact Comtech EF Data.

#### 7.3.2 RF Converter Module

#### Synthesizer and IFLO Lock Detect Fault:

During normal operation, neither the Upconverter nor the Downconverter synthesizer or IFLO should experience a Lock Detect fault.

- If one or more of these functions is faulted the CSAT will not function properly.
- If a fault condition exists and an EXT REF is being used, check the connection to the CSAT and make sure it is secure.
- It may be necessary to remove the EXT REF if it is faulty.
- If the fault still exists, contact Comtech EF Data Customer Support.

#### 7.3.3 Reference Oscillator Module

#### **Reference Lock Detect:**

A fault ("FT") indicates that the reference oscillator is not locked. Check all connections to the converter module to make sure they are secure. If the fault still exists, contact Comtech EF Data Customer Support.

#### 7.3.4 LNA Curent Fault

#### **LNA Curent Fault:**

This can indicate either a problem in the CSAT LNA current source circuitry or a problem with the LNA.

- First, ensure that the LNA is connected and that no shorts exist. Use the RMS? Command to guery the measured LNA current.
- If the LNA and cable are OK, proceed to disconnect the LNA and measure from the center conductor of the cable to the shield of the cable using a DVM. A voltage of 12Vdc shall be measured if the LNA Current Source is Enable (i.e., LCS=1).
- Contact Comtech EF Data Customer Support for further troubleshooting.

## 7.3.5 Fan Fault

Fan Fault:

Contact Comtech EF Data Customer Support for troubleshooting help.

# **7.3.6** Temperature Fault

### **CSAT Over Temperature Fault:**

A fault ("FT") indicates that the converter is over temperature. Turn the prime power switch off and return the CSAT to Comtech EF Data for repair.

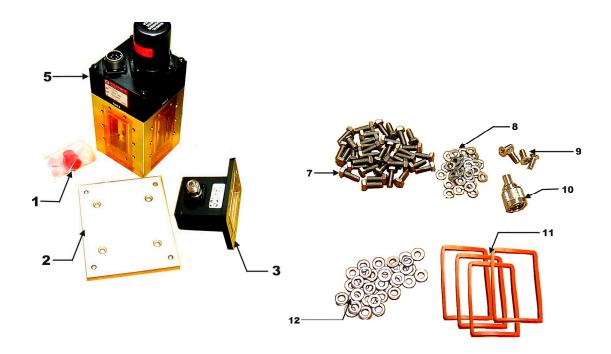
# **Chapter 8. LNA INSTALLATION**



The following installation applies to any CSAT unit.

## 8.1 LNA Installation

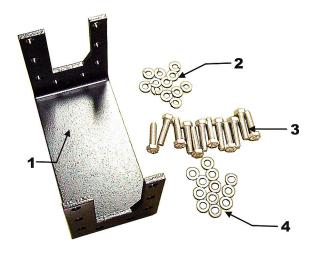
The AS/0438, Mounting LNA Switch Kit, is the kit for the LNA installation.


## 8.1.1 TOOLS REQUIRED

The following tools are recommended for unit installation.

| QTY | Description                            |
|-----|----------------------------------------|
| 1   | Adjustable wrench                      |
|     | Alternate: Set of various box wrenches |

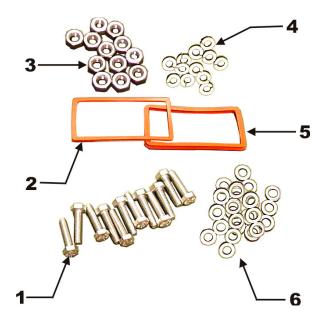
# 8.1.2 LNA Mounting Kits


| Part No. | Nomenclature                  | QTY |
|----------|-------------------------------|-----|
| AS/0438  | Kit, LNA Switch Mounting      | 1   |
| AS/0461  | Kit, Waveguide CPR229         | 1   |
| AS/0502  | Bracket, TX/RX Filter Support | 1   |



| Item | Part No.           | Nomenclature                        | QTY |
|------|--------------------|-------------------------------------|-----|
| 1    | 15D1002            | Cover                               | 2   |
| 2    | FP/BR0076          | Bracket, Switch                     | 1   |
| 3    | 28P1084            | Adapter                             | 1   |
| 4    | Not Used           |                                     |     |
| 5    | SW/WG2AGSM         | Switch, CPR229 +24V, Sealed         | 1   |
| 6    | Not Used           |                                     |     |
| 7    | HW/M6X1X15MMHEX    | Bolt, Hexhead                       | 36  |
| 8    | HW/M6LOCK          | Washer, Lock                        | 36  |
| 9    | HW/M6X1X15MMFLATSS | Screw, Flat                         | 4   |
| 10   | CN/CX50NMALE       | $CN - 5\Omega$ , N Male Termination | 1   |
| 11   | GA/GSKTCPR229FULL  | Gasket, CPR229                      | 4   |
| 12   | HW/M6FLAT          | Washer, Flat                        | 36  |
| -13  | AS-0502            | TX/RX Filter Support Bracket        | 1   |

<sup>-</sup> Not shown


Figure 8-1. Mounting LNA Switch Kit, AS/0438



| Item | Part No.      | Nomenclature                   | QTY |
|------|---------------|--------------------------------|-----|
| 1    | FP/BR0085     | Bracket, Support, TX/RX Filter | 1   |
| 2    | M6 Lockwasher | M6 Lockwasher                  | 12* |
| 3    | HW/M6X1X25MM  | Bolt, Hexhead                  | 12* |
| 4    | M6 Flatwasher | M6 Flatwasher                  | 12* |

\* Note: Quantity may vary

Figure 8-2 TX/RX Filter Support Bracket, AS/0502



(For mounting customer-supplied unit to LNA assembly)

| Item | Part No.          | Nomenclature               | QTY |
|------|-------------------|----------------------------|-----|
| 1    | HW/M6X1X30MMHEX   | Bolt, Hexhead M6           | 12  |
| 2    | GA/GSKTCPR229HALF | Gasket, CPR229, Half-Thick | 1   |
| 3    | HW/M6X1HEXNUT     | Nut, Hex M6                | 12  |
| 4    | HW/M6LOCK         | Washer, Lock M6            | 12  |
| 5    | GA/GSKTCPR229FULL | Gasket, CPR229, Full-Thick | 1   |
| 6    | HW/M6FLAT         | Washer, M6 Flat            | 24  |

Figure 8-3. Waveguide Kit, CPR229, AS/0461

# 8.1.3 Assemble LNA Switch Kit, AS/0438

| Step      | Procedures                                                                                                                |
|-----------|---------------------------------------------------------------------------------------------------------------------------|
| 1         | Remove all protective tape from switch and keep it clean.                                                                 |
| 2         | Position Low Noise Amplifiers (LNAs) and gasket (11, Figure                                                               |
|           | 2-1) on Port 1 and Port 3 of switch (5).                                                                                  |
| 3         | Secure each LNA with eight bolts (7, Figure 2-1), lock washers                                                            |
|           | (8) and flat washers (12).                                                                                                |
| 4         | Position adapter (3) and gasket (11) on Port 2 and secure with 10                                                         |
|           | bolts (7), lock washers (8), and flat washers (12).                                                                       |
| 5         | Place termination (10) on threaded part of adapter (3)                                                                    |
| IMPORTANT | Ensure that the OUTPUT flange of the filter is against switch (5). TRF filter is Customer-Selectable at time of ordering. |
| 6         | Position customer-select TRF filter, gasket (11), and support                                                             |
|           | bracket (1, Figure 2-2) on Port 4 of switch (5, Figure 2-1) and                                                           |
|           | secure with eight bolts (3, Figure 2-2), lockwashers (2), and flat                                                        |
|           | washers (1), and use two bolts (7, Figure 2-1), lockwashers (8),                                                          |
|           | and flat washers (12).                                                                                                    |
| 7         | Set assembly aside for later installation.                                                                                |

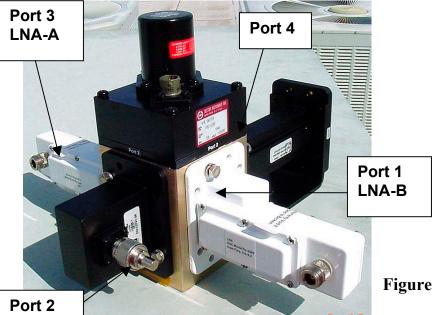



Figure 8-4. Switch Port Locations

## 8.2 INSTALLATION OF LNA ASSEMBLY

# 8.2.1 SINGLE-THREAD LNA INSTALLATION

Refer to Figure 8-5.



Figure 8-5. Installation of Single-Thread LNA

The LNA is mounted to the OMT as follows:

• Waveguide Kit, CPR229, PN AS/0461

To install a single LNA to an antenna:

- 1. Remove the protective cover from the antenna OMT and LNA.
- 2. Install the appropriate gasket on the antenna end of the LNA.
  - a. If only one of the mounting surfaces has a groove, use the half-thick gasket.
  - b. If both mounting surfaces have grooves, use the full thick gasket.
- 3. Position the LNA (with gasket) in place on the antenna and fasten using the supplied hardware.

## **8.2.2 REDUNDANT LNA INSTALLATION**

Refer to Figure 8-6.



Figure 8-6. Installation of the Redundant LNA Assembly.

- 1. Remove the protective cover from the antenna OMT.
- 2. Install the appropriate gasket (8-3) on the antenna end of the TRF.
  - a. If only one of the mounting surfaces has a groove, use the half-thick gasket.(2)
  - b. If both mounting surfaces have grooves, use the full thick gasket (5).
- 3. Position the LNA switch assembly (with gasket) in place on the antenna and fasten using the supplied hardware.

This page is intentionally left blank.

# Appendix A. CSAT5060 5 to 25 Watt INSTALLATION



Upon completion of installation, refer to Chapter 8 for LNA installation.

## A.1 Unpacking and Inspection

Inspect the shipping container for damage:

- Retain shipping container and packing materials for possible re-shipment.
- Checked to determine that all parts, materials and documentation has been shipped with the converter.
- Inspect converter for possible damage, and then test for proper operation.
   If the shipment is incomplete, or there is mechanical damage, or the converter does not operate properly:
- Notify the Comtech EF Data Customer Service representative immediately.
   If there is damage to the shipping container:
- Notify the carrier, and retain all shipping materials for inspection by the carrier.

#### A.1.1 Man-Power

Comtech EF Data recommends that two technicians be required to install any of the following installations.

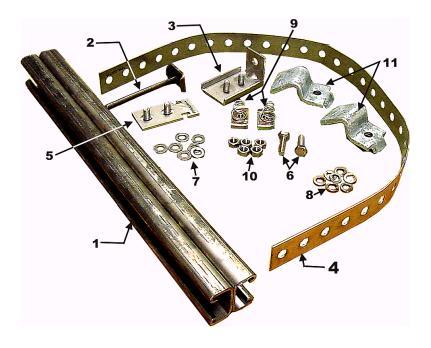
## A.1.2 Tools Required

The following tools are recommended for unit installation.

| Qty. | Description                            |
|------|----------------------------------------|
| 1    | Adjustable Wrench                      |
|      | Alternate: Set of various box wrenches |
| 1    | Phillips® - Head Screwdriver           |
| 1    | Tin Snips                              |

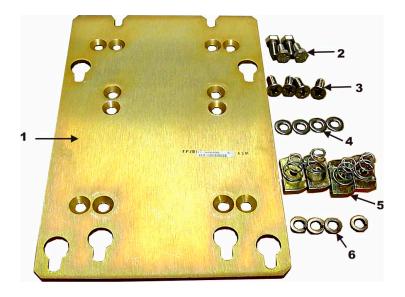
# A.2 Single-Thread Configuration




The Downconverter RF input connector is wired to supply DC voltage to an LNA. This voltage is capable of damaging any test equipment connected to the connector. Do not connect test equipment to this connector without a coaxial DC block between the connector and the test equipment.

# A.2.1 Mounting Kit

The following mounting is providing to pole-mount the unit in a single-thread configuration. The following tables reflect the contents of the mounting kits.


Table A-1. Universal Pole Mount, AS/0599

| Part No. | Nomenclature                     |   |
|----------|----------------------------------|---|
| AS/0414  | Kit, Universal Pole Mount        | 1 |
| AS/0608  | Bracket, Mount 25W Single Thread | 1 |



| Item No. | Part No.             | Nomenclature                                 | QTY |
|----------|----------------------|----------------------------------------------|-----|
| 1        | FP/BR0078            | Bracket, Unistrut                            | 1   |
| 2        | FP/BR0072            | Bracket, Strap Tensioner                     | 1   |
| 3        | FP/BR0070            | Bracket, Strap-Termination Pole Mounting Kit | 1   |
| 4        | FP/BR0071            | Bracket, 1 1/4 Strap                         | 1   |
| 5        | FP/BR0069            | Bracket, Strap-Fixed, Pole Mounting Kit      | 1   |
| 6        | HW/M8X1.25X25HEXSS   | Bolt, Hexhead, M8X1.25X25, SS                | 2   |
| 7        | HW/M8FLATSS          | Washer, Flat, M8 SS, Metric                  | 7   |
| 8        | HW/M8LOCKSS          | Washer, Split lock, M8, SS, Metric           | 7   |
| 9        | HW/M8SPRINGNUT       | Springnut, M8 xX 1.25                        | 2   |
| 10       | HW/M8X1.25MMHEXNUTSS | Nut, Hex M8X1.25X16MM, SS                    | 5   |
| 11       | HW/PIPEBLOCK         | Pipe, Block                                  | 2   |

Figure A-1. Universal Pole Mounting Kit, AS/0414



| Item No. | Part No.           | Nomenclature                    | QTY |
|----------|--------------------|---------------------------------|-----|
| 1        | FP/BR0095          | Bracket, Single-Thread 25W CSAT | 1   |
| 2        | HW/M8X1.25MMHEX    | Bolt, Hexhead                   | 4   |
| 3        | HW/M81.25X20MMFHSS | Screw, Flathead                 | 4   |
| 4        | HW/M8FLATSS        | Washer, Flat SS                 | 4   |
| 5        | HW.M8SPRINGNUT     | Springnut                       | 4   |
| 6        | HW/M8LOCKSS        | Washer, Splitlock SS            | 4   |

Figure A-2. Single-Thread Bracket, AS/0608

# A.2.2 Single-Thread Installation

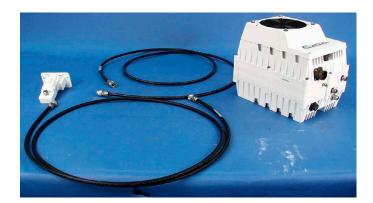



Figure A-3. Single-Thread Installation

IMPORTANT Two RF Cables (TX/RX) and a LNA are required for installation.

| Step | Procedures                                                                          |
|------|-------------------------------------------------------------------------------------|
| 1    | Place Unistrut bracket (1, Figure A-1) on a flat surface.                           |
| 2    | Slide springnuts (9) into the channel of the Unistrut bracket.                      |
| 3    | Fasten two pipe blocks (11) loosely to the springnuts using two bolts (6), two flat |
|      | washers (7), and two-split washer (8).                                              |



Figure A-4. Preparing the Pole Bracket



Figure A-5. Installing the Pole Bracket with CSAT Mounting Plate.

| ~ .       |                                                                                        |
|-----------|----------------------------------------------------------------------------------------|
| Step      | Procedures                                                                             |
| 4         | Position the Unistrut bracket (1) with pipe blocks (11) against the mounting pole,     |
|           | slide the pipe blocks (11) until they contact the mounting pole. Ensure the pipe       |
|           | blocks (11) are centered to the Unistrut bracket (1). Tighten the hardware.            |
| 5         | Attach bracket (5, figure A-1) to the strap (4) using two nuts (10), two flat washers, |
|           | (7), and two split washers (8).                                                        |
| 6         | Place the assembly against the pole with the strap around the pole and trim the        |
|           | strap to fit as shown in Figure A-5, using the tin snips. Attach bracket (3, figure A- |
|           | 1) to the strap (4) using two nuts (10), two flat washers (7), and two split washers   |
|           | (8).                                                                                   |
| 7         | Slide tensioner bracket (2) into channel of the Unistrut bracket (1). Place            |
|           | assembly on the pole. Slide bracket (3) over bracket (2).                              |
| 8         | Place flat washer (7) and split washer (8), and nut (10) on bracket (2). Tighten nut   |
|           | to secure the tension strap.                                                           |
| 9         | Slide two springnuts, (5, figure A-2) into channel of the Unistrut bracket             |
|           | (1, figure A-1).                                                                       |
| 10        | Place bracket (1, Figure A-2) over springnuts and secure using screws (3).             |
|           | Observe the orientation of the "Key" slots used for mounting the CSAT                  |
|           | Transceiver. (Refer to Figure A-6.)                                                    |
| IMPORTANT |                                                                                        |
| 11        | Loosely install four bolts (4, figure A-2), four flat washers (4), and four split      |
| 11        | washers (6) into bolts hole located on the rear side of the unit.                      |
| 12        |                                                                                        |
| 12        | Position unit against the bracket and hook the bolts into the key slots. Tighten bolts |
|           | to secure. (Refer to Figure A-8.)                                                      |



Figure A-6. CSAT Single-Thread Bracket with Hardware



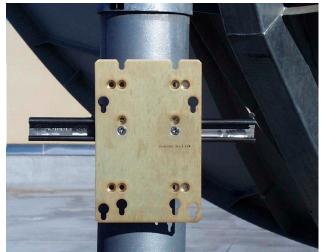





Figure A-8. Mount CSAT Unit

#### A.2.3 Cable Installation

Refer to Figure A-9.

Care shall be exercised in cable installation. Install the cables using the most direct route and secure with clamps and ties. Avoid all sharp bends.

Cable connectors used in outdoors application shall be sealed to avoid leakage, particularly, N-type connectors. Moisture can seep into junctions at the plug end of the connector, between the fixed and movable parts, and where the cable connects to the connector. Signal attenuation and possible loss of signal can occur in the presence of moisture. All cable junctions shall be sealed with a self-amalgamating tape, such as 3M, Type 23 Scotch Self-Amalgamating tape, or equivalent, including military style (MS) connectors.



The Downconverter RF input connector is wired to supply DC voltage to an LNA. This voltage is capable of damaging any test equipment connected to the connector. Do not connect test equipment to this connector without a coaxial DC block between the connector and the test equipment.

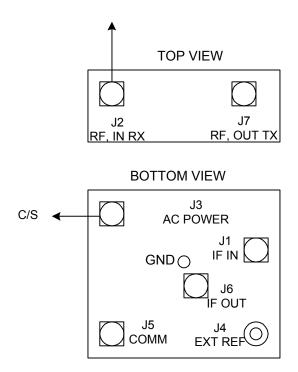



Figure A-9. Cable Connections

# A.3 SPAR-MOUNT INSTALLATION

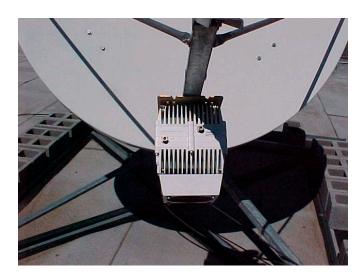



Figure A-10. SPAR-Mount Configuration

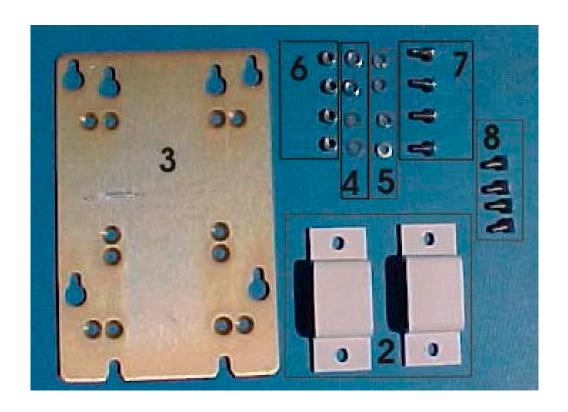

# A.3.1 Mounting kit

Table A-2 reflects the contents of the mounting kits.

**Table A-2. SPAR Mount Installation** 

| Part No.   | Nomenclature                  | QTY |
|------------|-------------------------------|-----|
| *KT/9676-1 | Kit, SPAR Mounting, 1 x 2     | 1   |
| *KT/9676-2 | Kit, SPAR Mounting, 2.5 x 2.5 | 1   |

<sup>\*</sup> Customer-Select



| Item<br>No. | Part No.           | Nomenclature                                     | QTY | KT/9676-1 | KT/9676-2 |
|-------------|--------------------|--------------------------------------------------|-----|-----------|-----------|
| NO. 2       | FP/BR0073          | Procket Char 1.00 v 2.00                         | 2   | X         |           |
|             |                    | Bracket, Spar 1.00 x 2.00                        |     | ^         | V         |
| -2A         | FP/BR9776-1        | Bracket, Spar 2.5 x 2.5                          | 2   |           | X         |
| 3           | FP/BR0095          | Bracket, Single-Thread                           | 1   | X         | X         |
| 4           | HW/M8FLATSS        | Washer, Flat, M8 SS, Metric                      | 8   | X         | X         |
| 5           | HW/M8LOCKSS        | Washer, Splitlock, M8, SS, Metric                | 4   | X         | X         |
| 6           | HW/M8X1.25HEXNUTSS | Nut, Hex M8 x 1.25, SS, Metric                   | 4   | X         | X         |
| 7           | HW/M8X1.25X15MMHEX | Bolt, Hex Head, M8 X 1.25 x 15 MM, SS            | 4   | X         | Х         |
| 8           | HW/M8X1.25X30MMFHS | Screw, Flathead, M8X1.25X30MM, SS, 90 $^{\circ}$ | 4   | X         | Х         |

- Item not illustrated.

Figure A-11. SPAR Mount Kit, KT/9676-1 or KT/9676-2

# A.3.2 Mounting Instructions

| Step      | Procedures                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Install four bolts (7, Figure A-11) and flat washers (4) to the transceiver.  DO NOT tighten at this time.                                       |
| 2         | Install brackets (2) on the SPAR. Position brackets (2) against bracket (3) and secure with flat washers (4), split washers (5), and screws (8). |
| IMPORTANT | Observe the orientation of the "Key" slots used for mounting the CSAT Transceiver.                                                               |
| 3         | Lift the unit and slide the bolts heads into the holes of bracket (3). Hook in place. Tighten the bolts.                                         |

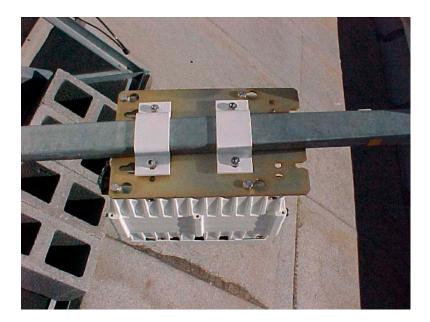



Figure A-12. Mounting Instructions

#### A.3.3 Cable Installation

Refer to Figure A-13.

Care shall be exercised in cable installation. Install the cables using the most direct route and secure with clamps and ties. Avoid all sharp bends.

Cable connectors used in outdoors application shall be sealed to avoid leakage, particularly, N-type connectors. Moisture can seep into junctions at the plug end of the connector, between the fixed and movable parts, and where the cable connects to the connector. Signal attenuation and possible loss of signal can occur in the presence of moisture. All cable junctions shall be sealed with a self-amalgamating tape, such as 3M, Type 23 Scotch Self-Amalgamating tape, or equivalent, including military style (MS) connectors.



The Downconverter RF input connector is wired to supply DC voltage to an LNA. This voltage is capable of damaging any test equipment connected to the connector. Do not connect test equipment to this connector without a coaxial DC block between the connector and the test equipment.

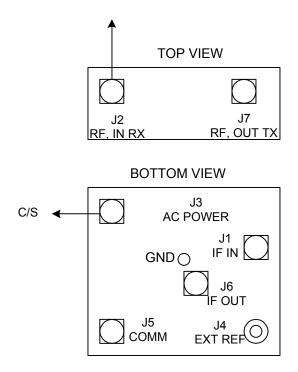



Figure A-13. Cable Connections

# A.4 Redundancy Configuration



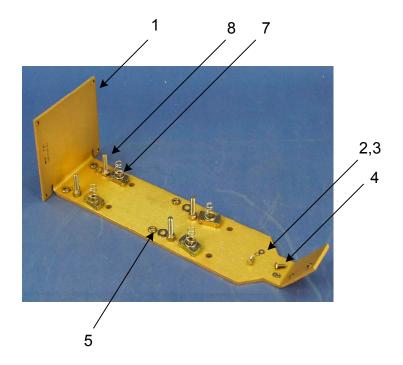
Figure A-14. Redundancy Configuration

# A.4.1 Mounting Kit

Table A-3 and Table A-4 reflects the contents of the mounting kits.

Table A-3. 1:1 Mounting Kit Assembly, AS/0596

| Part No. | Nomenclature                 | QTY |
|----------|------------------------------|-----|
| *AS/0414 | Kit, Redundancy, Pole Mount  | 2   |
| AS/0489  | Assy, 1:1 25W CSAT           | 1   |
| *AS/0608 | Assy, Bracket Mount 25W CSAT | 2   |




IMPORTANT Refer to A.3. Single-Thread Installation.

Table A-4. Assembly, 1:1 25W CSAT Switching, AS/0510

| Part No. |            | Nomenclature                 | QTY |
|----------|------------|------------------------------|-----|
| AS/0438  | (see Note) | Kit, LNA Switch              | 1   |
| AS/0440  |            | Kit, Cable, 1:1 C-Band       | 1   |
| AS/0461  |            | Kit, Waveguide CPR229        | 1   |
| AS/0490  |            | Assy, Remote Switch Cast Box | 1   |
| AS/0503  |            | Assembly, TX/Remote Switch   | 1   |

Note: Refer to Chapter 2, LNA for details.



| tem No. | Part No.           | Nomenclature                | QTY |
|---------|--------------------|-----------------------------|-----|
| 1       | FP/BR0080          | Bracket, Remote Coax Switch | 1   |
| 2       | HW/M4Flat          | Washer, Flat                | 2   |
| 3       | HW/M4LOCK          | Washer, Lock                | 2   |
| 4       | HW/M4X10PHP        | Screw, Phillips Head 7X10   | 2   |
| 5       | HW/M8FLATSS        | Washer, Flat SS             | 4   |
| 6       | HW/M8LOCKSS        | Washer, Split-Lock SS       | 4   |
| 7       | HW/M8SPRINGNUT     | Springnut                   | 4   |
| 8       | HW/M8X1.25X25HEXSS | Bolt, Hex-Head SS           | 4   |

Figure A-15. 1:1 25W CSAT TX Switch Bracket, AS/0489



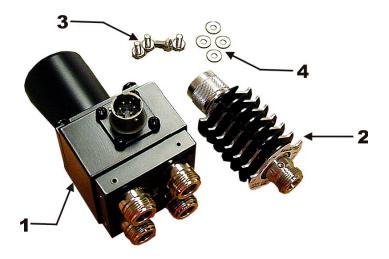

| Item | Part No.  | Nomenclature              | QTY |
|------|-----------|---------------------------|-----|
| 1    | CA/RF0097 | Cable, Output RF          | 4   |
| 2    | CA/WR0051 | Cable, Control-LNA Switch | 1   |
| 3    | CA/WR0052 | Cable, Control-TX Switch  | 1   |
| 4    | CA/WR0053 | Cable, Communication      | 1   |
| 5    | CA/WR0053 | Cable, Communication      | 1   |

Figure A-16. Cable Kit, AS/0440



| Item | Part No. | Nomenclature                | QTY |
|------|----------|-----------------------------|-----|
|      | AS/0490  | Assembly, Remote Switch Box | 1   |

Figure A-17. Remote Switch Box Assembly, AS/0490



| Item | Part No.           | Nomenclature            | QTY |
|------|--------------------|-------------------------|-----|
| 1    | SW/COAX-N-F-Sealed | Switch COAX N-FE        | 1   |
| 2    | RF/WG9605          | Attenator, Modification | 1   |
| 3    | HW/M4X.07X8MMPHMS  | Screw, Panhead          | 4   |
| 4    | HW/M4LOCK          | Washer, Lock            | 4   |

Figure A-18. TX/Remote Switch Assembly, AS/0503

# A.4.2 Assemble TX/Remote Switch, AS/0503

**Note:** Observe port locations as shown.

| Step | Procedures                                                                          |
|------|-------------------------------------------------------------------------------------|
| 1    | Connect attenuator (2, figure A-18) to switch (1). Ensure that groove of attenuator |
|      | allows for the connection of the terminator.                                        |
| 2    | Connect the $50\Omega$ termination to the attenuator.                               |

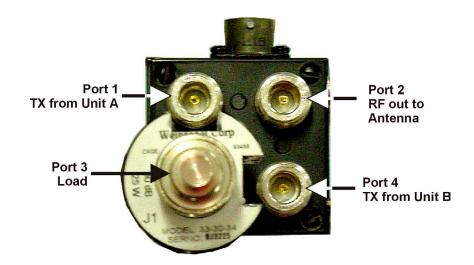



Figure A-19. Connections for the TX/Remote Switch Ports  $(50\Omega \text{ Termination and Attenuator Installed})$ 

# A.4.3 Connect Cabling to the Remote Switch Box, AS/0490

| Step | Procedures                                                              |  |
|------|-------------------------------------------------------------------------|--|
| 1    | Connect one end of the RF cable, (4, Figure A-16) to UNIT A connector.  |  |
| 2    | Connect one end of the RF cable, (5) to UNIT B connector.               |  |
| 3    | Connect one end of Cable (2) to RX SWITCH connector of the switch box   |  |
|      | (1, figure A-17).                                                       |  |
| 4    | Connect one end of Cable (3, figure A-16) to TX SWITCH connector of the |  |
|      | switch box (1, figure A-17). Set box aside for later installation.      |  |



Figure A-20. Remote Switch Cast Box and Hardware

# A.5 Redundancy Installation

#### **Notes:**

- 1. Redundant CSAT's require two AS/0414 pole mount kits. Refer to A.2, Single-Thread Installation, for AS/0414 installation instructions.
- 2. After the two pole brackets have been attached to the pole, they need to be properly spaced in relation to each other. This spacing is established with the switchmounting bracket (1, figure A-2).



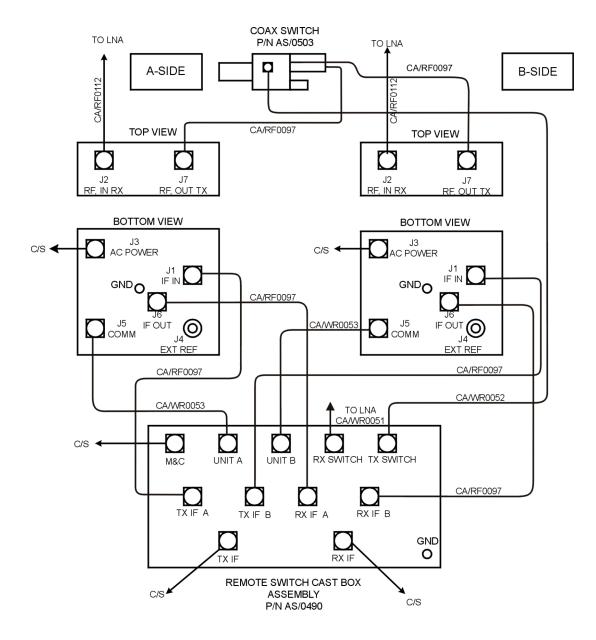
Figure A-21. Installation of the Redundant Brackets

| Step | Procedures                                                                                  |
|------|---------------------------------------------------------------------------------------------|
| 1    | Center the bracket (1, figure A-2) horizontally on the top Unistrut bracket                 |
|      | and fasten with two bolts (8) flat washers (5), and split washers (6).                      |
| 2    | Loosen lower Unistrut bracket and position so the lower holes in the bracket are aligned    |
|      | vertically with the center of the lower Unistrut bracket.                                   |
| 3    | Position the springnuts as required. Secure bracket (1) to the Unistrut bracket using two   |
|      | bolts (8), flat washers (5), and split washers (6). Tighten the tension bracket.            |
| 4    | Install mounting brackets on each side of bracket (1) in accordance with A-2, Single-Thread |
|      | instructions.                                                                               |
| 5    | Place a unit on each mounting bracket and secure with four bolts.                           |
| 6    | Position assembled switch (1, figure A-18) on bracket (1, figure A-15) and secure with two  |
|      | screws (4), flat washers (5), and lock washers (6).                                         |
| 7    | Position switch box (1, figure A-17) on bracket (1, figure A-15). Secure with four bolts    |
|      | (7, figure A-15), four flat washers (12) and four lock washers (8).                         |



Figure A-22. Installation of the CSAT Transceivers




Figure A-23. Cable the Redundant Configuration

### A.5.1 Cable Installation

Refer to Figure A-24.

Care should be exercised in cable installation. Install the cables using the most direct route and secure with clamps and ties. Avoid all sharp bends.

Cable connectors used in outdoors application must be sealed to avoid leakage, particularly, N-type connectors. Moisture can seep into junctions at the plug end of the connector, between the fixed and movable parts, and where the cable connects to the connector. Signal attenuation and possible loss of signal can occur in the presence of moisture. All cable junctions must be sealed with a self-amalgamating tape, such as 3M, Type 23 Scotch Self-Amalgamating tape, or equivalent, including military style (MS) connectors.



CS = CUSTOMER-SUPPLIED

Figure A-24. Cabling the Redundant Configuration (Block Diagram)

This page is intentionally left blank.

# Appendix B. CSAT5060 50-Watt INSTALLATION



Upon completion of installation, refer to Chapter 8 for LNA installation.

## B.1 Unpacking and Inspection

Inspect the shipping container for damage:

- Retain shipping container and packing materials for possible re-shipment.
- Check to determine that all parts, materials and documentation have been shipped with the converter.
- Inspect converter for possible damage, and then test for proper operation.
- If the shipment is incomplete, there is mechanical damage, or the converter does not operate properly, notify the Comtech EF Data Customer Service representative immediately.
- If there is damage to the shipping container, notify the carrier, and retain all shipping materials for inspection by the carrier.

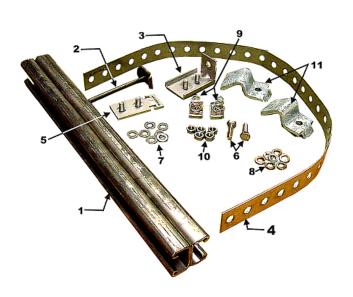
#### B.2 Personnel

Comtech EF Data recommends that two technicians perform any of the following installations.

## B.3 Tools Required

The following tools are recommended for unit installation.

| Qty. | Description                            |
|------|----------------------------------------|
| 1    | Adjustable wrench                      |
|      | Alternate: Set of various box wrenches |
| 1    | Tin Snips                              |
|      |                                        |


# B.4 SINGLE-THREAD CONFIGURATION

# **B.4.1** Mounting Kits

The following mounting hardware is used to pole-mount the unit in a single-thread configuration.

Table B-1. Universal Pole Mount, 50 Watt, AS/0600


| Part No. | Nomenclature                         | QTY |
|----------|--------------------------------------|-----|
| AS/0414  | Kit, Redundancy, Pole Mount          | 2   |
| AS/0415  | Kit, CSAT Single-Thread Mounting Kit | 1   |





| Item No. | Part No.             | Nomenclature                                 | QTY |
|----------|----------------------|----------------------------------------------|-----|
| 1        | FP/BR0078            | Bracket, Unistrut                            | 1   |
| 2        | FP/BR0072            | Bracket, Strap Tensioner                     | 1   |
| 3        | FP/BR0070            | Bracket, Strap-Termination Pole Mounting Kit | 1   |
| 4        | FP/BR0071            | Bracket, 1 1/4 Strap                         | 1   |
| 5        | FP/BR0069            | Bracket, Strap-Fixed, Pole Mounting Kit      | 1   |
| 6        | HW/M8X1.25X25HEXSS   | Bolt, Hexhead, M8X1.25X25, SS                | 2   |
| 7        | HW/M8FLATSS          | Washer, Flat, M8 SS, Metric                  | 7   |
| 8        | HW/M8LOCKSS          | Washer, Split lock, M8, SS, Metric           | 7   |
| 9        | HW/M8SPRINGNUT       | Springnut, M8 xX 1.25                        | 2   |
| 10       | HW/M8X1.25MMHEXNUTSS | Nut, Hex M8X1.25X16MM, SS                    | 5   |
| 11       | HW/BLK-PIPE2-8       | Pipe, Block                                  | 2   |

Figure B-1. Universal Pole Mounting Kit, AS/0414



| Item No. | Part No.           | Nomenclature                      | QTY |
|----------|--------------------|-----------------------------------|-----|
| 1        | FP/BR0067          | Bracket, Pole Mount Kit           | 2   |
| 2        | HW/M8FLATSS        | Washer, Flat, M8 SS, Metric       | 8   |
| 3        | HW/M8LOCKSS        | Washer, Splitlock, M8, SS, Metric | 8   |
| 4        | HW/M8SPRINGNUT     | Springnut, M8 xX 1.25             | 4   |
| 5        | HW/M8X1.25MMHEXSS  | Bolt, Hex M8X1.25X16MM, SS        | 4   |
| 6        | HW/M8X1.25X25HEXSS | Bolt, Hexhead, M8X1.25X25, SS     | 4   |

Figure B-2. CSAT Mounting Brackets, AS/0415

# B.4.2 SINGLE-THREAD INSTALLATION



Figure B-3. Single-Thread Configuration

| Step | Procedures                                                                        |
|------|-----------------------------------------------------------------------------------|
| 1    | Place Unistrut bracket (1, figure B-1) on a flat surface.                         |
| 2    | Slide two springnuts (9) into the each channel of the Unistrut bracket.           |
| 3    | Fasten two pipe blocks (11) loosely to the springnuts using two bolts (6), two    |
|      | flat washers (7), and two splitlock washers (8).                                  |
| 4    | Refer to Figure B-4. Position Unistrut bracket (1, figure B-2) with pipe blocks   |
|      | (11) against the mounting pole, slide the pipe blocks (11) until they contact the |
|      | mounting pole.                                                                    |
| 5    | Ensure the pipe blocks (11) are centered to the Unistrut bracket (1). Tighten the |
|      | hardware.                                                                         |



Figure B-4. Installing the Pole Bracket



Figure B-5. Looking down

| Step      | Procedures                                                                                                                                                                                   |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6         | Attach bracket (5, figure B-1) to the strap (4) using two nuts (10), two flat                                                                                                                |  |
|           | washers, (7), and two split lock washers (8).                                                                                                                                                |  |
| 7         | Place the assembly against the pole with the strap around the pole and trim                                                                                                                  |  |
|           | strap (4) to fit as shown in Figure B-4, using tin snips or equivalent.                                                                                                                      |  |
| 8         | Attach bracket (3, figure B-1) to the strap (4) using two nuts (10), two flat                                                                                                                |  |
|           | washers (7), and two split lock washers (8).                                                                                                                                                 |  |
| 9         | Slide tensioner bracket (2) into channel of top Unistrut (1).                                                                                                                                |  |
| 10        | Place assembly on the pole. Slide bracket (3) over bracket (2).                                                                                                                              |  |
| 11        | Place flat washer (7), splitlock washer (8), and nut (10) on bracket (2).                                                                                                                    |  |
| 12        | Tighten nut to secure the tension strap.                                                                                                                                                     |  |
| 13        | Slide two springnuts, (9) into channel of the Unistrut brackets (1).                                                                                                                         |  |
| 14        | Repeat procedure for second Unistrut bracket.                                                                                                                                                |  |
| 15        | Install brackets (1, figure B-2) and secure to Unistrut bracket with bolts (6),                                                                                                              |  |
|           | flat washers (2) and split lock washers (4).                                                                                                                                                 |  |
| IMPORTANT | Ensure the brackets are centered in each Unistrut. Ensure the unit is positioned with the fan facing outward and free of any obstructions. Do not tighten bolt (5, figure B-2) at this time. |  |
| 16        | Install four bolts (6), flat washers (2) and split lock washers (3)                                                                                                                          |  |
|           | on the CSAT unit.                                                                                                                                                                            |  |
| 17        | Lift the CSAT unit and slide bolts (6) into the grooves of the brackets                                                                                                                      |  |
|           | (1, figure B-1).                                                                                                                                                                             |  |
| 18        | Ensure the washers are against the bracket.                                                                                                                                                  |  |
| 19        | Tighten all hardware.                                                                                                                                                                        |  |



Figure B-6. Install CSAT 50 Watt Unit

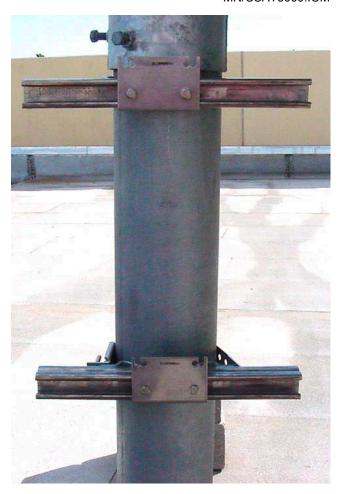
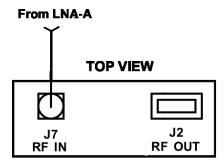



Figure B-7. CSAT Single-Thread Bracket with Hardware

#### B.4.3 Cable Installation


Take care during cable installation. Install the cables using the most direct route and secure with clamps and ties. Avoid all sharp bends.

Cable connectors used in outdoor applications shall be sealed to avoid leakage, particularly N-type connectors. Moisture can seep into junctions at the plug end of the connector, between the fixed and movable parts, and where the cable connects to the connector. Signal attenuation and possible loss of signal can occur in the presence of moisture. All cable junctions shall be sealed with a self-amalgamating tape, such as 3M, Type 23 Scotch Self-Amalgamating tape, or equivalent, including military style (MS) connectors.



The Downconverter RF input connector is wired to supply DC voltage to an LNA. This voltage is capable of damaging any test equipment connected to the connector. Do not connect test equipment to this connector without a coaxial DC block between the connector and the test equipment.

**NOTE:** All cables connecting to the CSAT unit connectors located on the bottom surface are customer-supplied.



# GND J4 J3 COMM AC POWER

Figure B-8. Cable Connections

#### **B.5** Redundancy Configuration

# B.5.1 Mounting Kit

Table B-2. Final 1:1, C-Band Assembly

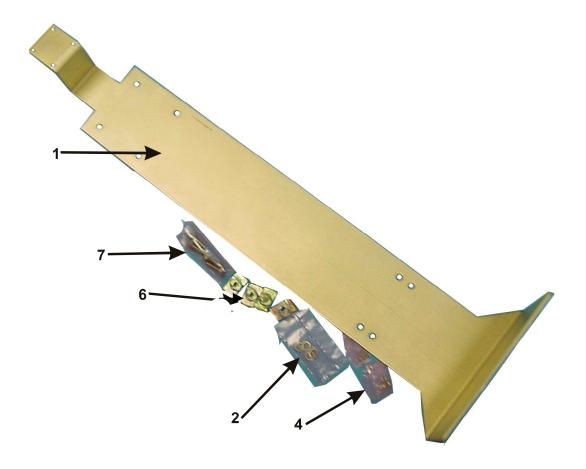

| Part No. | Nomenclature              | QTY |
|----------|---------------------------|-----|
| AS/0438  | Kit, LNA Mounting         | 1   |
| AS/0460  | Kit, Waveguide CPR137G    | 1   |
| AS/0461  | Kit, Waveguide CPR229     | 1   |
| AS/0462  | Switch, Waveguide, TX 1:1 | 1   |
| AS/0490  | Assy, Remote Switch Box   | 1   |

Table B-3. 1:1 Mounting Assembly, AS/0597

| Part No. | Nomenclature               | QTY |
|----------|----------------------------|-----|
| *AS/0414 | Redundancy Kit, Pole Mount | 2   |
| *AS/0415 | Single-Thread Mounting Kit | 2   |
| AS/0437  | Switch, Mount Kit TX       | 1   |



**IMPORTANT** \*Refer to Single-Thread Configuration.



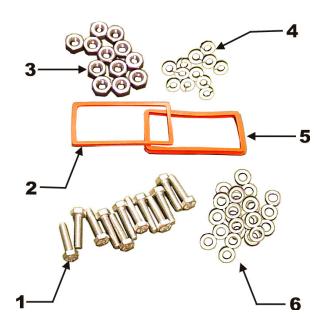

| Item No. | Part No.           | Nomenclature                      | QTY |
|----------|--------------------|-----------------------------------|-----|
| 1        | FP/BR0066          | Bracket, Switch Mounting          | 1   |
| 2        | HW/M8FLATSS        | Washer, Flat M8, SS, Metric       | 4   |
| 3        | Not Used           |                                   |     |
| 4        | HW/M8LOCKSS        | Washer, Lock SS, Metric           | 4   |
| 5        | Not Used           |                                   |     |
| 6        | HW/M8SPRINGNUT     | Springnut, M8 X 1.25              | 4   |
| 7        | HW/M8X1.25X25HEXSS | Bolt, Hex Head, M8 X 1.25 X 25 SS | 4   |

Figure B-9. TX Switch Mounting Kit, AS/0437



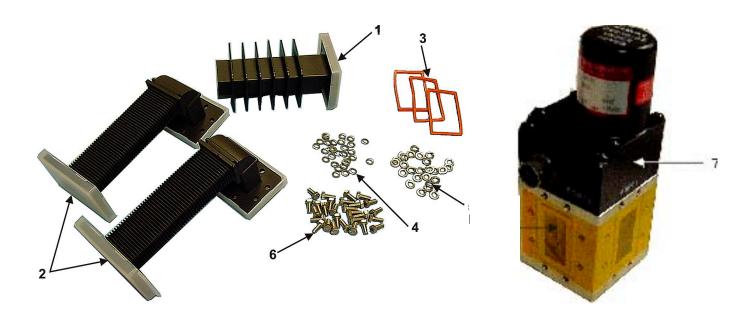

| Item | Part No.  | Nomenclature              | QTY |
|------|-----------|---------------------------|-----|
| 1    | CA/RF0097 | Cable, Output RF          | 4   |
| 2    | CA/WR0051 | Cable, Control-LNA Switch | 1   |
| 3    | CA/WR0052 | Cable, Control-TX Switch  | 1   |
| 4    | CA/WR0053 | Cable, Communication      | 1   |
| 5    | CA/WR0053 | Cable, Communication      | 1   |

Figure B-10. Cable Kit



| Item No. | Part No.          | Nomenclature                 | QTY |
|----------|-------------------|------------------------------|-----|
| 1        | HW/M5X.08X30MMHEX | Bolt, M5X.08X30MM Hexhead SS | 12  |
| 2        | GA/GSKTCP137HLF   | Gasket, CP137, Half Thick    | 1   |
| 3        | HW/M5X.08HEXNUT   | Nut, Hex M5 x .08 SS         | 12  |
| 4        | HW/M5LOCK         | Lockwasher, M5 SS, Metric    | 12  |
| 5        | GA/GSKTCP137FUL   | Gasket, CP137, Full Thick    | 1   |
| 6        | HW/M5FLAT         | Washer, M5 Flat              | 24  |

Figure B-11. Waveguide Kit, CPR137G, AS/0460 (for mounting customer-supplied unit to Transmit Switch Assembly)



| Item No. | Part No.          | Nomenclature                                | QTY |
|----------|-------------------|---------------------------------------------|-----|
| 1        | FP/WG0034         | Waveguide Termination, Small Fins           | 1   |
| 2        | FP/WG0043         | Waveguide CPRG137, 90° "E" 5.50 Flex x 2.00 | 2   |
| 3        | GA/GSKTCP137FUL   | Gasket, CP137, Full Thick                   | 3   |
| 4        | HW/M5FLAT         | Washer, M5 Flat                             | 28  |
| 5        | HW/M5LOCK         | Lockwasher, M5 SS, Metric                   | 28  |
| 6        | HW/M5X.08X12MMHEX | Bolt, M5X.08X12MM Hexhead SS                | 28  |
| 7        | SW/WG3AGSM        | Switch, CPR137G, +24V, Sealed Metric        | 1   |

Figure B-12. Waveguide Switch, TX 1:1, AS/0462



Figure-B-13. Remote Switch Box Assembly, AS/0490

# B.5.2 Redundancy Installation

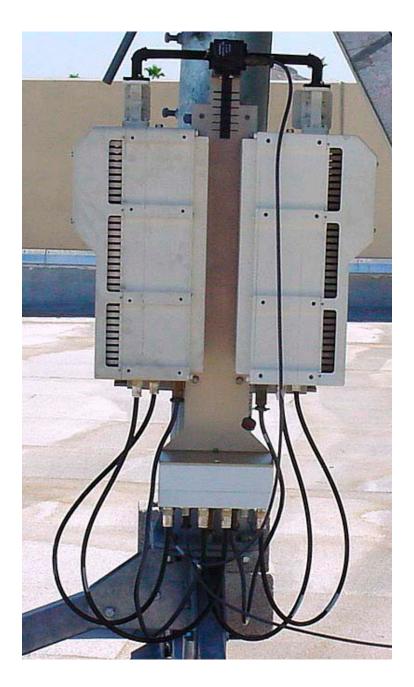



Figure B-14. Redundant Configuration

# B.5.2.1 Assemble Waveguide Switch, AS/0462

| Step | Procedures                                                                       |
|------|----------------------------------------------------------------------------------|
| 1    | Remove all protective tape from switch and keep it clean.                        |
| 2    | Install waveguide termination (1, Figure B-12) and gasket (3) to Port 2 of       |
|      | switch (7) and secure with bolts (6), lockwashers (5), and flat washer (4).      |
| 3    | Install waveguides (2) and gaskets (3) to Ports 1 and 3 of switch (7) and secure |
|      | with bolts (6), lockwashers (5), and flat washers (4).                           |
| 4    | Finished assembly should look identical to Figure B-15.                          |
| 5    | Set waveguide switch assembly aside for later installation.                      |

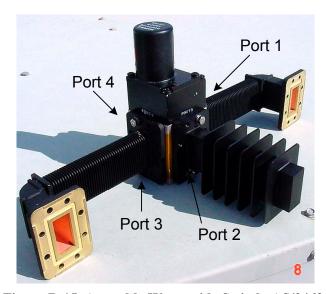



Figure B-15. Assemble Waveguide Switch, AS/0462

# **B.5.2.2** Assemble Redundant Configuration

| Step | Procedures                                                                     |
|------|--------------------------------------------------------------------------------|
| 1    | Place Unistrut bracket (1, figure B-1) on a flat surface. See Figure B-16.     |
| 2    | Slide two springnuts (9, figure B-1) into the channel of the Unistrut bracket. |
| 3    | Fasten two pipe blocks (11) loosely to the springnuts using two bolts (6), two |
|      | flat washers (7), and two splitlock washers (8).                               |
| 4    | Repeat procedure for second Unistrut bracket (1).                              |
| 5    | Refer to Figure B-18. Position Unistrut bracket (1) with pipe blocks (11)      |
|      | against the mounting pole; slide the pipe blocks (11) until they contact the   |
|      | mounting pole.                                                                 |
| 6    | Ensure the pipe blocks (11) are centered to the Unistrut brackets (1).         |
| 7    | Tighten the hardware.                                                          |



Figure B-16. Preparing the Pole Bracket

| Step | Procedures                                                                      |
|------|---------------------------------------------------------------------------------|
| 8    | Attach bracket (5, figure B-1) to the strap (4) using two nuts (10), two flat   |
|      | washers, (7), and two splitlock washers (8).                                    |
| 9    | Place the assembly against the pole with the strap around the pole and trim the |
|      | strap (4) to fit as shown in Figure B-17, using the tin snips.                  |
| 10   | Attach bracket (3, figure B-1) to the strap (4) using two nuts (10), two flat   |
|      | washers (7), and two splitlock washers (8).                                     |
| 11   | Slide tensioner bracket (2) into channel of the top Unistrut bracket (1).       |
| 12   | Place assembly on the pole.                                                     |
| 13   | Slide bracket (3) over bracket (2).                                             |
| 14   | Install flat washer (7) and splitlock washer (8), and nut (10) on bracket (2).  |
| 15   | Tighten nut (10) to secure the tension strap.                                   |



Figure B-17. Pipe Blocks



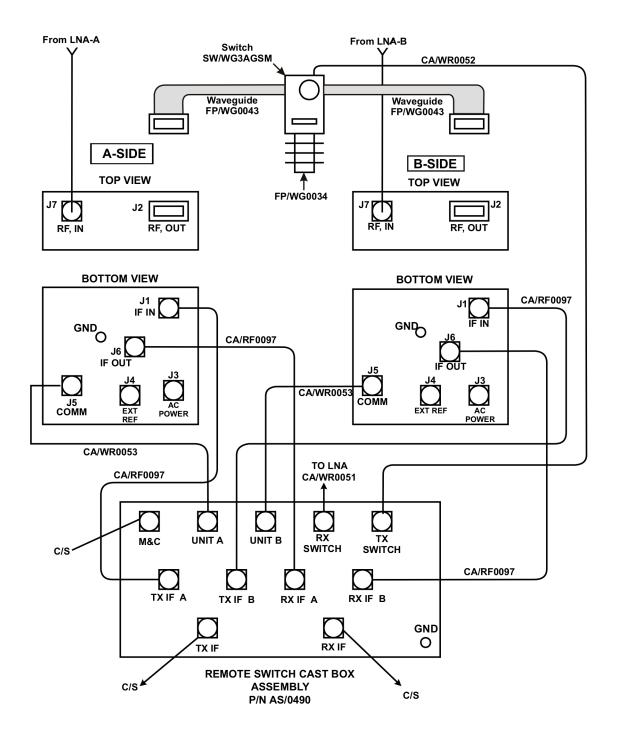
Figure B-18. Looking down at Pipe Blocks

| Step      | Procedures                                                                                |
|-----------|-------------------------------------------------------------------------------------------|
| 16        | Slide eight springnuts into channel of the Unistrut bracket (1, figure B-1).              |
| 17        | Repeat procedure for second Unistrut bracket (1).                                         |
| 18        | Install bracket (1, figure B-9) and secure to Unistruts with four bolts (7) and           |
|           | flat washers (2).                                                                         |
| 19        | Ensure that the bracket is centered on the Unistruts.                                     |
| 20        | Tighten hardware.                                                                         |
| IMPORTANT | When installed, ensure the CSAT 50 Watt unit fan is facing outward                        |
| 21        | Install brackets (1, Figure B-2) and secure to Unistrut brackets with four                |
|           | bolts (6), flat washers (2) and split lock washers (3). Refer to Figure B-6 for           |
|           | proper orientation.                                                                       |
| 22        | See Figure B-25. Position brackets (1) against center bracket. DO NOT                     |
|           | tighten hardware at this time.                                                            |
| 23        | Install four bolts (5, Figure B-2) with split washers (3), and flat washers (2)           |
|           | into provided mounting holes in the CSAT 50 Watt casting.                                 |
| 24        | Carefully lift the unit, and slide the bolt head into the groove of bracket (Figure B-6). |
| 25        | Ensure the washers are between the unit and the bracket                                   |
| 26        | Do not tighten hardware at this time.                                                     |
| 27        | Temporarily install the assembled waveguide switch (See Figures B-20 for                  |
|           | location and orientation).                                                                |
| 28        | Ensure that the ports line-up and can be secured. If a gap is present, adjust             |
|           | by sliding the unit and brackets on the Unistrut (In or Out).                             |
| 29        | Tighten hardware.                                                                         |
| 30        | Install the assembled waveguide switch (Figure B-20) and waveguide                        |
|           | gaskets.                                                                                  |
| 31        | Secure assembly with bolts, lock washers and flat washers from hardware                   |
|           | kits supplied with each CSAT unit (not shown, PN AS/0402-2).                              |



Figure B-19. Position Brackets against Center Bracket.




Figure B-20. Installation of the Waveguide Switch.

#### B.6 Cable Installation

Take care during cable installation (Figure B-28). Install the cables using the most direct route and secure with clamps and ties. Avoid all sharp bends.

Cable connectors used in outdoor applications must be sealed to avoid leakage, particularly N-type connectors. Moisture can seep into junctions at the plug end of the connector, between the fixed and movable parts, and where the cable connects to the connector.

Signal attenuation and possible loss of signal can occur in the presence of moisture. All cable junctions must be sealed with a self-amalgamating tape, such as 3M, Type 23 Scotch Self-Amalgamating tape, or equivalent, including military style (MS) connectors.



#### **CS = CUSTOMER-SUPPLIED**

Figure B-21. Cable Installation

# Appendix C. CSAT5060 100-Watt INSTALLATION



Upon completion of installation, refer to Chapter 8 for LNA installation.

#### C.1 Unpacking and Inspection

Inspect the shipping container for damage:

- 1. Retain shipping container and packing materials for possible re-shipment.
- 2. Check to determine that all parts, materials and documentation have been shipped with the converter.
- 3. Inspect converter for possible damage, and then test for proper operation.
  - Notify the Comtech EF Data Customer Service representative immediately if the shipment is incomplete, or there is mechanical damage, or the converter does not operate properly.
  - Notify the carrier, and retain all shipping materials for inspection by the carrier, if there is damage to the shipping container.

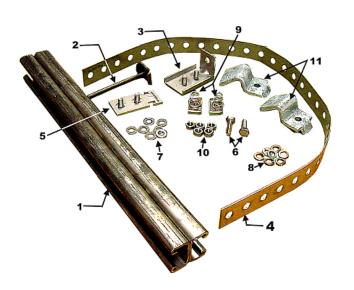
#### C.2 Man-Power

Comtech EF Data recommends that two technicians perform any of the following installations.

#### C.3 Tools Required

The following tools are recommended for unit installation.

| Qty. | Description                            |
|------|----------------------------------------|
| 1    | Adjustable wrench                      |
|      | Alternate: Set of various box wrenches |
| 1    | Tin Snips                              |
|      | ·                                      |


# C.4 Single -Thread Configuration

# C.4.1 Mounting Kits

The following mounting procedures are to provide pole-mount instructions for the unit in a single-thread configuration.

Table C-1. Universal Pole Mount, 100 Watt, AS/0600

| Part No. | Nomenclature                         |   |
|----------|--------------------------------------|---|
| AS/0414  | Kit, Redundancy, Pole Mount          | 2 |
| AS/0415  | Kit, CSAT Single-Thread Mounting Kit | 1 |





| Item No. | Part No.             | Nomenclature                                 | QTY |
|----------|----------------------|----------------------------------------------|-----|
| 1        | FP/BR0078            | Bracket, Unistrut                            | 1   |
| 2        | FP/BR0072            | Bracket, Strap Tensioner                     | 1   |
| 3        | FP/BR0070            | Bracket, Strap-Termination Pole Mounting Kit | 1   |
| 4        | FP/BR0071            | Bracket, 1 1/4 Strap                         | 1   |
| 5        | FP/BR0069            | Bracket, Strap-Fixed, Pole Mounting Kit      | 1   |
| 6        | HW/M8X1.25X25HEXSS   | Bolt, Hexhead, M8X1.25X25, SS                | 2   |
| 7        | HW/M8FLATSS          | Washer, Flat, M8 SS, Metric                  | 7   |
| 8        | HW/M8LOCKSS          | Washer, Splitlock, M8, SS, Metric            | 7   |
| 9        | HW/M8SPRINGNUT       | Springnut, M8 xX 1.25                        | 2   |
| 10       | HW/M8X1.25MMHEXNUTSS | Nut, Hex M8X1.25X16MM, SS                    | 5   |
| 11       | HW/BLK-PIPE2-8       | Pipe, Block                                  | 2   |

Figure C-1 Universal Pole Mounting Kit, AS/0414



| Item No. Part No. |                    | Nomenclature                      | QTY |
|-------------------|--------------------|-----------------------------------|-----|
| 1                 | FP/BR0067          | Bracket, Pole Mount Kit           | 2   |
| 2                 | HW/M8FLATSS        | Washer, Flat, M8 SS, Metric       | 8   |
| 3                 | HW/M8LOCKSS        | Washer, Splitlock, M8, SS, Metric | 8   |
| 4                 | HW/M8SPRINGNUT     | Springnut, M8 xX 1.25             | 4   |
| 5                 | HW/M8X1.25MMHEXSS  | Bolt, Hex M8X1.25X16MM, SS        | 4   |
| 6                 | HW/M8X1.25X25HEXSS | Bolt, Hexhead, M8X1.25X25, SS     | 4   |

Figure C-2. CSAT Mounting Brackets, AS/0415

# C.4.2 Single-Thread Installation

| Step | Procedures                                                                                                                      |
|------|---------------------------------------------------------------------------------------------------------------------------------|
| 1    | Place Unistrut brackets (1, figure C-1) on a flat surface.                                                                      |
| 2    | Slide two springnuts (9) into the each channel of the Unistrut brackets.                                                        |
| 3    | Fasten two pipe blocks (11) loosely to the springnuts using two bolts (6), two flat washers (7), and two splitlock washers (8). |
| 4    | Position Unistrut brackets (1) with pipe blocks (11) against the                                                                |
|      | mounting pole, slide the pipe blocks (11) until they contact the mounting pole. (See Figure C-3.)                               |
| 5    | Ensure the pipe blocks (11) are centered to the Unistrut brackets (1).                                                          |
|      | Tighten the hardware.                                                                                                           |
| 6    | Attach bracket (5, figure C-1) to the strap (4) using two nuts (10), two                                                        |
|      | flat washers, (7), and two splitlock washers (8).                                                                               |
| 7    | Place the assembly against the pole with the strap around the pole and                                                          |
|      | trim strap (4) to fit as shown in Figure C-4, using the tin snips.                                                              |
| 8    | Attach bracket (3, figure C-1) to the strap (4) using two nuts (10), two                                                        |
|      | flat washers (7), and two splitlock washers (8).                                                                                |
| 9    | Slide tensioner bracket (2) into channel of the top Unistrut bracket (1).                                                       |



Figure C-3. Looking down



Figure C-4. Installing the Pole Bracket

| Step | Procedures                                                                 |
|------|----------------------------------------------------------------------------|
| 10   | Place assembly on the pole. Slide bracket (3) over bracket (2).            |
| 11   | Place flat washer (7) and splitlock washer (8), and nut (10) on            |
|      | bracket (2).                                                               |
| 12   | Tighten nut to secure the tension strap.                                   |
| 13   | Slide two springnuts, (4, figure C-2) into channel of the Unistrut         |
|      | brackets (1, figure C-1).                                                  |
| 14   | Repeat procedure for second Unistrut bracket.                              |
| 15   | Install brackets (1, figure C-2) and secure to Unistrut bracket with bolts |
|      | (6), flat washers (2) and split lock washers (4).                          |
| 16   | Install four bolts (6), flat washers (2) and splitlock washers (3) on the  |
|      | CSAT unit.                                                                 |
| 17   | Lift the CSAT unit and slide bolts (6) into the grooves of the             |
|      | brackets (1). (See Figure C-6.)                                            |
| 18   | Ensure the washers are against the bracket.                                |
| 19   | Tighten the bolts.                                                         |



Ensure the brackets are centered in each Unistrut. Ensure the unit is positioned with the fan facing outward and free of any obstructions. Do not tighten bolt (5) at this time.



Figure C-5. CSAT Single-Thread Bracket with Hardware



Figure C-6. Install CSAT 100 Watt Unit

#### C.4.3 Cable Installation

Refer to Figure C-7.

Care shall be exercised in cable installation. Install the cables using the most direct route and secure with clamps and ties. Avoid all sharp bends.

Cable connectors used in outdoor applications shall be sealed to avoid leakage, particularly N-type connectors. Moisture can seep into junctions at the plug end of the connector, between the fixed and movable parts, and where the cable connects to the connector. Signal attenuation and possible loss of signal can occur in the presence of moisture. All cable junctions shall be sealed with a self-amalgamating tape, such as 3M, Type 23 Scotch Self-Amalgamating tape, or equivalent, including military style (MS) connectors.



The Downconverter RF input connector is wired to supply DC voltage to an LNA. This voltage is capable of damaging any test equipment connected to the connector. Do not connect test equipment to this connector without a coaxial DC block between the connector and the test equipment.

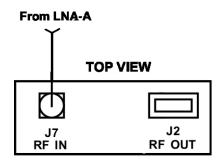
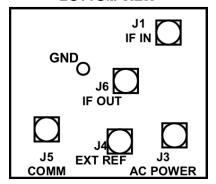




Figure C-7. Cable Connections

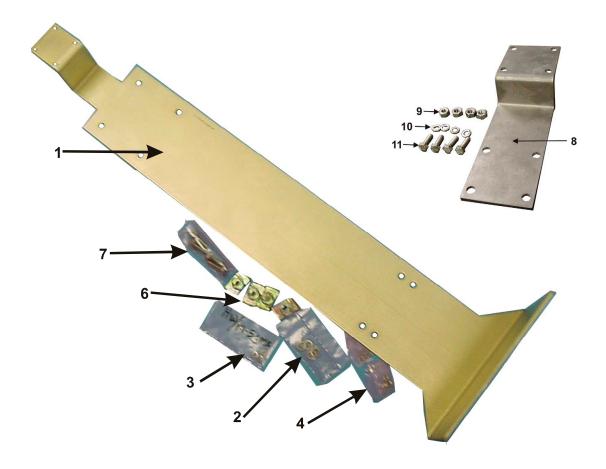
#### **BOTTOM VIEW**



**NOTE:** All cables connecting to the CSAT unit connectors located on the bottom surface are customer-supplied.

#### C.5 REDUNDANCY CONFIGURATION

# C.5.1 Mounting Kit


Table C-2. Final 1:1, C-Band Assembly

| Part No. | Nomenclature              | QTY |
|----------|---------------------------|-----|
| AS/0438  | Kit, LNA Mounting         | 1   |
| AS/0460  | Kit, Waveguide CPR137G    | 1   |
| AS/0461  | Kit, Waveguide CPR229     | 1   |
| AS/0478  | Switch, Waveguide, TX 1:1 | 1   |
| AS/0490  | Assy, Remote Switch Box   | 1   |
| AS/TBD   | Cable Kit (See Fig. 2-12) | 1   |

Table C-3. 1:1 Mounting Assembly, AS/0598

| Part No. | Nomenclature               | QTY |
|----------|----------------------------|-----|
| *AS/0414 | Redundancy Kit, Pole Mount | 2   |
| *AS/0415 | Single-Thread Mounting Kit | 2   |
| AS/0479  | Switch, Mount Kit TX       | 1   |

<sup>\*</sup>Refer to Single Thread Configuration.



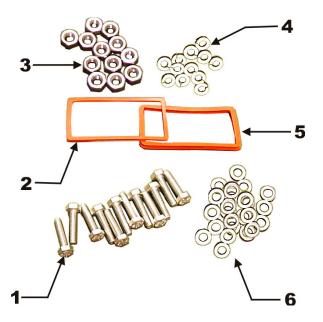
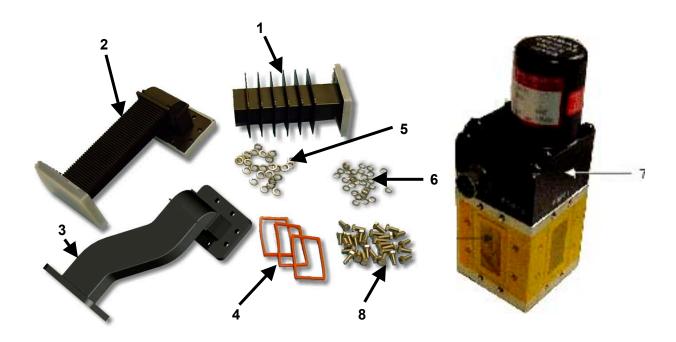

| Item No. | Part No.           | Nomenclature                      | QTY |
|----------|--------------------|-----------------------------------|-----|
| 1        | FP/BR0066          | Bracket, Switch Mounting          | 1   |
| 2        | HW/M8FLATSS        | Washer, Flat M8, SS, Metric       | 4   |
| 3        | HW/M5FLAT          | Washer, Flat SS Metric            | 8   |
| 4        | HW/M5LOCK          | Washer, Lock SS, Metric           | 4   |
| 5        | Not Used           |                                   |     |
| 6        | HW/M8SPRINGNUT     | Springnut, M8 X 1.25              | 4   |
| 7        | HW/M8X1.25X25HEXSS | Bolt, Hex Head, M8 X 1.25 X 25 SS | 4   |
| 8        | FP/BR0082          | Bracket, Switch Mounting          | 1   |
| 9        | HW/M5X.O8HEXNUT    | Nut, Hex                          | 4   |
| 10       | HW/M5LOCKSS        | Washer, Lock SS, Metric           | 4   |
| 11       | HW/M5X.08X15MMHEX  | Bolt, Hex Head                    | 4   |

Figure C-8. TX Switch Mounting Kit, AS/0479



| Item | Part No.  | Nomenclature              | QTY |
|------|-----------|---------------------------|-----|
| 1    | CA/RF0097 | Cable, Output RF          | 4   |
| 2    | CA/WR0051 | Cable, Control-LNA Switch | 1   |
| 3    | CA/WR0052 | Cable, Control-TX Switch  | 1   |
| 4    | CA/WR0053 | Cable, Communication      | 1   |
| 5    | CA/WR0053 | Cable. Communication      | 1   |


Figure C-9. Cable Kit



Note: For mounting customer-supplied unit to Transmit Switch Assembly

| Item No. | Part No.          | Nomenclature                 | QTY |
|----------|-------------------|------------------------------|-----|
| 1        | HW/M5X.08X30MMHEX | Bolt, M5X.08X30MM Hexhead SS | 12  |
| 2        | GA/GSKTCP137HLF   | Gasket, CP137, Half Thick    | 1   |
| 3        | HW/M5X.08HEXNUT   | Nut, Hex M5 x .08 SS         | 12  |
| 4        | HW/M5LOCK         | Lockwasher, M5 SS, Metric    | 12  |
| 5        | GA/GSKTCP137FUL   | Gasket, CP137, Full Thick    | 1   |
| 6        | HW/M5FLAT         | Washer, M5 Flat              | 24  |

Figure C-10. Waveguide Kit, CPR137G, AS/0460



| Item No. | Part No.          | Nomenclature                                | QTY |
|----------|-------------------|---------------------------------------------|-----|
| 1        | FP/WG0034         | Waveguide Termination, Small Fins           | 1   |
| 2        | FP/WG0043         | Waveguide CPRG137, 90° "E" 5.50 Flex x 2.00 | 1   |
| 3        | FP/WG0051         | Waveguide, CPRG137, "Jogged"                | 1   |
| 4        | GA/GSKTCP137FUL   | Gasket, CP137, Full Thick                   | 3   |
| 5        | HW/M5FLAT         | Washer, M5 Flat                             | 28  |
| 6        | HW/M5LOCK         | Lockwasher, M5 SS, Metric                   | 28  |
| 7        | SW/WG3AGSM        | Switch, CPR137G, +24V, Sealed Metric        | 1   |
| 8        | HW/M5X.08X12MMHEX | Bolt, M5X.08X12MM Hexhead SS                | 28  |

Figure C-11. Waveguide Switch, TX 1:1, AS/0478



Figure C-12. Remote Switch Box Assembly, AS/0490

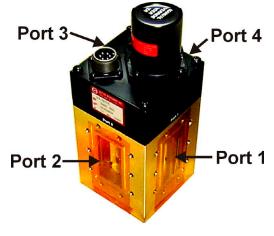

# C.5.2 Redundancy Installation



Figure C-13. Redundant Configuration

# C.5.2.1 Assemble Waveguide Switch, AS/0478

| Step | Procedures                                                                |
|------|---------------------------------------------------------------------------|
| 1    | Remove all protective tape from switch and keep it clean.                 |
| 2    | Install waveguide termination (1, figure C-12) and gasket (4) to Port 2   |
|      | (Figure C-14) of switch (7, figure C-12) and secure with bolts (8),       |
|      | lockwashers (6), and flat washer (7).                                     |
| 3    | Install waveguides (2) and gaskets (4) to Ports 1 and 3 of switch (7) and |
|      | secure with bolts (8), lockwashers (6), and flat washers (7).             |
| 4    | Final assembly should look identical to Figure C-15.                      |
| 5    | Set waveguide switch assembly aside for later installation.               |



**Figure C-14. Switch Port Locations** 

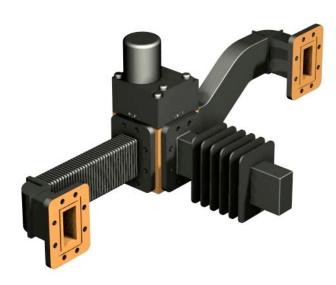



Figure C-15. Assemble Waveguide Switch, AS/0478

# C.5.2.2 Assemble Redundant Configuration

| Step | Procedures                                                                 |
|------|----------------------------------------------------------------------------|
| 1    | Place Unistrut bracket (1, Figure C-1) on a flat surface.                  |
| 2    | Slide two springnuts (9) into the channel of the Unistrut bracket.         |
| 3    | Fasten two pipe blocks (11) loosely to the springnuts using two bolts (6), |
|      | two flat washers (7), and two splitlock washers (8). (See Figure C-17.)    |
| 4    | Repeat procedure for second Unistrut bracket (1)                           |
| 5    | Position Unistrut bracket (1) with pipe blocks (11) against the mounting   |
|      | pole, slide the pipe blocks (11) until they contact the mounting pole.     |
| 6    | Ensure the pipe blocks (11) are centered to the Unistrut brackets (1).     |
| 7    | Tighten the hardware.                                                      |



Figure C-16. Pipe Blocks



Figure C-17. Looking down at Pipe Blocks

| Step      | Procedures                                                                |
|-----------|---------------------------------------------------------------------------|
| 8         | Attach bracket (5, figure C-1) to the strap (4) using two nuts (10), two  |
|           | flat washers, (7), and two splitlock washers (8).                         |
| 9         | Place the assembly against the pole with the strap around the pole and    |
|           | trim the strap (4) to fit as shown in Figure C-16, using the tin snips.   |
| 10        | Attach bracket (3, figure C-1) to the strap (4) using two nuts (10), two  |
|           | flat washers (7), and two splitlock washers (8).                          |
| 11        | Slide tensioner bracket (2) into channel of the top Unistrut bracket (1). |
| 12        | Place assembly on the pole.                                               |
| 13        | Slide bracket (3) over bracket (2).                                       |
| 14        | Place flat washer (7) and splitlock washer (8), and nut (10) on           |
|           | bracket (2).                                                              |
| 15        | Tighten nut to secure the tension strap.                                  |
| 16        | Slide two springnuts, (5, figure C-2) into channel of the Unistrut        |
|           | bracket (1, figure C-1).                                                  |
| 17        | Repeat procedure for second Unistrut bracket (1).                         |
| 18        | Install bracket (1, figure C-8) and secure to the Unistruts with four     |
|           | bolts (11), lock washers (10), and flat washers.                          |
| 19        | Install switch mount bracket (8, figure C-8), to main bracket (1).        |
|           | Secure with four bolts (11), lock washers (10), and nuts (9).             |
| 20        | Ensure that the bracket is centered on the Unistruts. Tighten hardware.   |
|           | When installed, ensure the CSAT fan is facing outward.                    |
| IMPORTANT | When installed, ensure the CSAT fail is facility outward.                 |
| 21        | Install brackets (1, figure C-2) and secure to Unistrut brackets with     |
|           | four bolts (6), flat washers (2) and split lock washers (3).              |
| 22        | Position brackets (1) against center bracket. Do not tighten hardware     |
|           | at this time.                                                             |
| 23        | Install four bolts (7, figure C-8) with split washers (10), and flat      |
|           | washers (2) into provided mounting holes in the CSAT 100-Watt             |
|           | casting.                                                                  |
| 24        | Carefully lift the unit, and slide the bolt head into the groove of       |
| 2.5       | bracket (1, figure C-8).                                                  |
| 25        | Ensure the washers are between the unit and the bracket.                  |
| 26        | DO NOT tighten hardware at this time.                                     |
| 26        | Temporarily install the assembled waveguide switch (Figure C-12).         |
| 27        | Ensure that the ports line-up and can be secured. If a gap is present,    |
|           | adjust by sliding the unit and bracket (1, figure C-2) on the Unistrut    |
| 20        | (In or Out). (See Figure C-19)                                            |
| 28        | Tighten hardware.                                                         |

| Step    | Procedures                                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|
| CAUTION | DO NOT remove factory-installed waveguide combiner from outpout of CSAT. Improper installation will damage the unit and void the warranty. |
| 29      | Install the assembled waveguide switch (Figure C-16) and waveguide                                                                         |
|         | gaskets.                                                                                                                                   |
| 30      | Secure assembly with bolts, lock washers and flat washers from                                                                             |
|         | hardware kits supplied with each CSAT (not shown, PN AS/0402-2).                                                                           |



Figure C-18. Observe for Gap



Figure C-19. Installation of the Waveguide Switch.

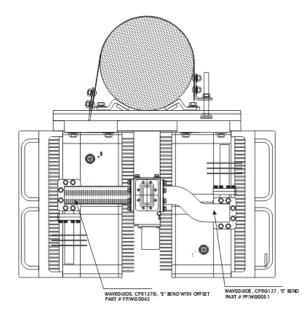
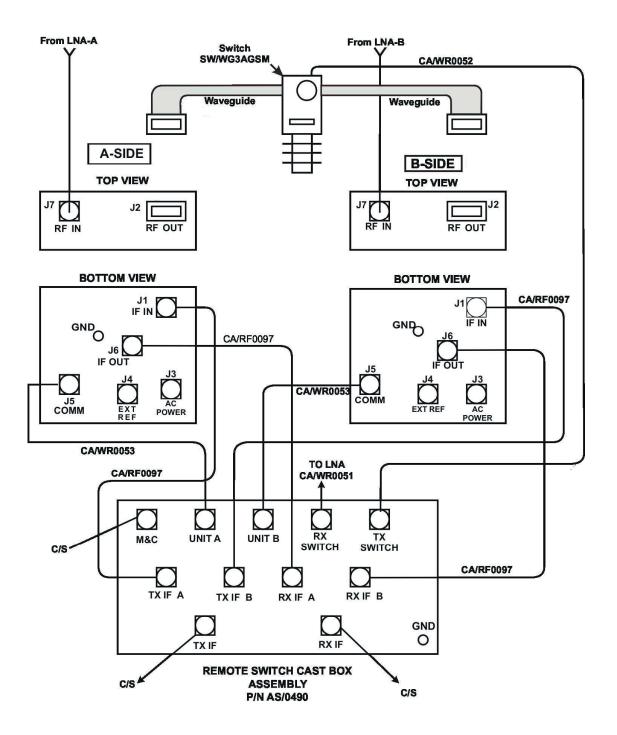



Figure C-20. Waveguide layout


#### C.6 CABLE INSTALLATION

Refer to Figure C-21.

Care should be exercised in cable installation. Install the cables using the most direct route and secure with clamps and ties. Avoid all sharp bends.

Cable connectors used in outdoor applications must be sealed to avoid leakage, particularly N-type connectors. Moisture can seep into junctions at the plug end of the connector, between the fixed and movable parts, and where the cable connects to the connector.

Signal attenuation and possible loss of signal can occur in the presence of moisture. All cable junctions must be sealed with a self-amalgamating tape, such as 3M, Type 23 Scotch Self-Amalgamating tape, or equivalent, including military style (MS) connectors.



C/S = CUSTOMER - SUPPLIED

Figure C-21. Cable Installation

| NOTES: |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |

#### METRIC CONVERSIONS

# Units of Length

| Unit         | Centimeter              | Inch                    | Foot                    | Yard                    | Mile                     | Meter                   | Kilometer | Millimeter |
|--------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-----------|------------|
| 1 centimeter | _                       | 0.3937                  | 0.03281                 | 0.01094                 | 6.214 x 10 <sup>-6</sup> | 0.01                    | _         |            |
| 1 inch       | 2.540                   | _                       | 0.08333                 | 0.2778                  | 1.578 x 10 <sup>-5</sup> | 0.254                   | _         | 25.4       |
| 1 foot       | 30.480                  | 12.0                    | _                       | 0.3333                  | 1.893 x 10 <sup>-4</sup> | 0.3048                  | _         | _          |
| 1 yard       | 91.44                   | 36.0                    | 3.0                     | _                       | 5.679 x 10 <sup>-4</sup> | 0.9144                  | _         | _          |
| 1 meter      | 100.0                   | 39.37                   | 3.281                   | 1.094                   | 6.214 x 10 <sup>-4</sup> | _                       | _         | _          |
| 1 mile       | 1.609 x 10 <sup>5</sup> | 6.336 x 10 <sup>4</sup> | 5.280 x 10 <sup>3</sup> | 1.760 x 10 <sup>3</sup> | _                        | 1.609 x 10 <sup>3</sup> | 1.609     | _          |
| 1 mm         | _                       | 0.03937                 | _                       | _                       | _                        | _                       | _         | _          |
| 1 kilometer  | _                       | _                       | _                       | _                       | 0.621                    | _                       | _         | _          |

# **Temperature Conversions**

| Unit               | ° Fahrenheit | ° Centigrade    |  |
|--------------------|--------------|-----------------|--|
|                    |              | 0               |  |
| 32° Fahrenheit     | _            | (water freezes) |  |
|                    |              | 100             |  |
| 212° Fahrenheit    | _            | (water boils)   |  |
|                    |              | 273.1           |  |
| -459.6° Fahrenheit |              | (absolute 0)    |  |

| Formulas             |
|----------------------|
| C = (F - 32) * 0.555 |
| F = (C * 1.8) + 32   |

#### **Units of Weight**

| Unit         | Gram                  | Ounce<br>Avoirdupois | Ounce<br>Troy | Pound<br>Avoir. | Pound<br>Troy | Kilogram |
|--------------|-----------------------|----------------------|---------------|-----------------|---------------|----------|
| 1 gram       | _                     | 0.03527              | 0.03215       | 0.002205        | 0.002679      | 0.001    |
| 1 oz. avoir. | 28.35                 | _                    | 0.9115        | 0.0625          | 0.07595       | 0.02835  |
| 1 oz. troy   | 31.10                 | 1.097                | _             | 0.06857         | 0.08333       | 0.03110  |
| 1 lb. avoir. | 453.6                 | 16.0                 | 14.58         | _               | 1.215         | 0.4536   |
| 1 lb. Troy   | 373.2                 | 13.17                | 12.0          | 0.8229          | _             | 0.3732   |
| 1 kilogram   | 1.0 x 10 <sup>3</sup> | 35.27                | 32.15         | 2.205           | 2.679         | _        |



2114 WEST 7TH STREET TEMPE ARIZONA 85281 USA 480 • 333 • 2200 PHONE 480 • 333 • 2161 FAX