

# HPCST-5000

75W, 100W, 125W, 150W SSPA System High-Power C-Band Satellite Terminal Installation and Operation Manual

Part Number MN/HPCST5000.IOM Revision 0



EFData Corporation is an ISO 9001 Registered Company

# HPCST-5000

75W, 100W, 125W, and 150W SSPA System High-Power C-Band Satellite Terminal Installation and Operation Manual

Part Number MN/HPCST5000.IOM Revision 0 October 19, 1998

© Comtech EFData, 2000 All rights reserved. Printed in the USA.

Comtech EFData, 2114 West 7th Street, Tempe, Arizona 85281 USA, (480) 333-2200, FAX: (480) 333-2161.

#### Warranty Policy

This EFData Corporation product is warranted against defects in material and workmanship for a period of one year from the date of shipment. During the warranty period, EFData will, at its option, repair or replace products that prove to be defective.

For equipment under warranty, the customer is responsible for freight to EFData and all related custom, taxes, tariffs, insurance, etc. EFData is responsible for the freight charges **only** for return of the equipment from the factory to the customer. EFData will return the equipment by the same method (i.e., Air, Express, Surface) as the equipment was sent to EFData.

#### **Limitations of Warranty**

The foregoing warranty shall not apply to defects resulting from improper installation or maintenance, abuse, unauthorized modification, or operation outside of environmental specifications for the product, or, for damages that occur due to improper repackaging of equipment for return to EFData.

No other warranty is expressed or implied. EFData Corporation specifically disclaims the implied warranties of merchantability and fitness for particular purpose.

#### **Exclusive Remedies**

The remedies provided herein are the buyer's sole and exclusive remedies. EFData Corporation shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

#### Disclaimer

EFData has reviewed this manual thoroughly in order that it will be an easy-to-use guide to your equipment. All statements, technical information, and recommendations in this manual and in any guides or related documents are believed reliable, but the accuracy and completeness thereof are not guaranteed or warranted, and they are not intended to be, nor should they be understood to be, representations or warranties concerning the products described. Further, EFData reserves the right to make changes in the specifications of the products described in this manual at any time without notice and without obligation to notify any person of such changes.

If you have any questions regarding your equipment or the information in this manual, please contact the EFData Customer Support Department. (For more information, refer to the preface.)

# Preface

#### About this Manual

This manual provides installation and operation information for the EFData HPCST-5000 high-power C-Band satellite terminal. This is a technical document intended for earth station engineers, technicians, and operators responsible for the operation and maintenance of the HPCST-5000.

#### **Conventions and References Used in this Manual**

#### **Cautions and Warnings**



CAUTION indicates a hazardous situation that, if not avoided, may result in minor or moderate injury. CAUTION may also be used to indicate other unsafe practices or risks of property damage.



WARNING indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

#### Trademarks

Product names mentioned in this manual may be trademarks or registered trademarks of their respective companies and are hereby acknowledged.

#### **Related Documents**

The following documents are referenced in this manual:

- EFData CST-5000 C-Band Satellite Terminal Installation and Operation Manual
- EFData RSU-503L Redundancy Switch Unit Installation and Operation Manual
- EFData KP-10 External Keypad Installation and Operation Manual
- EFData Monitor and Control Software for EFData Satellite Terminals User's Guide
- EFData Specification SP/6750, HPCST-5000 High Power C-Band Satellite System
- EFData Specification SP/5351, HPA-6075 C-Band and 75W Power Amplifier
- EFData Specification SP/5110, HPA-500/-700 C-Band High Power (TWT) Amplifier
- EFData Specification SP/5389, HPCST-5000 High Power C-Band Satellite Terminal System

#### **Reporting Comments or Suggestions Concerning this Manual**

Comments and suggestions regarding the content and design of this manual will be appreciated. To submit comments, please contact the EFData Customer Support Department according to the following information.

#### **Customer Support**

Contact the EFData Customer Support Department for:

- Product support
- Information on returning a product
- Information on upgrading a product
- Product training
- Reporting comments or suggestions concerning manuals

An EFData Customer Support representative may be reached at:

EFData Corporation Attention: Customer Support Department 2114 West 7th Street Tempe, Arizona 85281 USA

(602) 968-0447 (Main EFData Number)(602) 859-6595 (24-Hour Customer Support Line)(602) 921-9012 (FAX)

or, E-Mail can be sent to the Customer Support Department at:

service@efdata.com

or, contact Customer Support Department at the web site:

http://www.efdata.com

To return an EFData product (in-warranty and out-of-warranty) for repair or replacement:

1. Request a Return Material Authorization (RMA) number from the EFData Customer Support Department.

Be prepared to supply the Customer Support representative with the model number, serial number, and a description of the problem.

- 2. To ensure that the product is not damaged during shipping, pack the product in its original shipping carton/packaging.
- 3. Ship the product back to EFData. (Shipping charges should be prepaid.)

For more information regarding the warranty policies, refer to the disclaimer page located behind the title page.

This page is intentionally left blank.

# **Table of Contents**

#### **CHAPTER 1. INTRODUCTION**

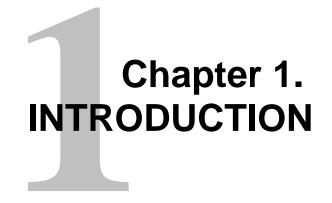
| 1.1   | Description                                 |  |
|-------|---------------------------------------------|--|
| 1-2   | Applications                                |  |
| 1-3   | Options                                     |  |
| 1-4   | Configurations                              |  |
| 1.4.1 | 1 Single Thread Configuration               |  |
| 1.4.2 | 2 Redundant System                          |  |
| 1-5   | Component Descriptions                      |  |
| 1.5.1 |                                             |  |
| 1.5.2 | 2 Low Noise Amplifier (LNA)                 |  |
| 1.5.3 | 3 Solid-State Power Amplifier (SSPA)        |  |
| 1.5.4 | 4 Monitor and Control (M&C)                 |  |
| 1.5.5 | 5 1:1 Redundant LNA Plate                   |  |
| 1.5.6 | 6 Redundant Switch Unit (RSU)               |  |
| 1.5.7 | 7 KP-10 Hand-Held Keypad (Optional)         |  |
| 1-6   | High-Power C-Band Satellite Terminal Models |  |
| 1-7   | HPCST-5000 Specifications                   |  |
| 1.7.1 | 1 Prime Power Specification                 |  |
| 1.7.2 | 2 System Interface                          |  |
| 1.7.3 | 3 System Environment Specification          |  |
| 1.7.4 | 4 HPCST-5000 Monitor and Control            |  |
| 1.7.5 | 5 System Receive Specification              |  |
| 1.7.6 | 5 System Transmit Characteristics           |  |
| 1.7.7 | 7 Leading Particulars                       |  |
|       |                                             |  |

| 1-8  | RFT Specifications                   |  |
|------|--------------------------------------|--|
| 1-9  | C-Band SSPA Specifications           |  |
| 1-10 | LNA Specifications                   |  |
| 1-11 | Dimensional Drawings                 |  |
| СНА  | APTER 2. EXTERNAL CONNECTIONS        |  |
| 2.1  | External Connections                 |  |
| 2.1. | 1.1 RFT External Connections         |  |
| 2    | 2.1.1.1 TX/IF Input (J1)             |  |
| 2    | 2.1.1.2 TX/RF Output (J2)            |  |
| 2    | 2.1.1.3 RX/IF Output (J3)            |  |
| 2    | 2.1.1.4 RX/RF Input (J4)             |  |
| 2    | 2.1.1.5 Prime Power (J5)             |  |
| 2    | 2.1.1.6 Serial Remote Control (J6)   |  |
| 2    | 2.1.1.7 Ground (GND)                 |  |
| 2.1. |                                      |  |
| 2    | 2.1.2.1 RF Input (J1)                |  |
| 2    | 2.1.2.2 Gain Control (J2)            |  |
| 2    | 2.1.2.3 Discrete Interface (J3)      |  |
| 2    | 2.1.2.4 RF Output Monitor Port (J4)  |  |
| 2    | 2.1.2.5 Prime Power (J5)             |  |
| 2    | 2.1.2.6 RF Output (J7)               |  |
| 2    | 2.1.2.7 Alarm/Interface Board        |  |
| CHA  | APTER 3. SINGLE THREAD CONFIGURATION |  |
| 3.1  | Unpacking                            |  |
| 3.2  | Inspecting the Equipment             |  |
| 3.2. | 2.1 Included Parts                   |  |
| 3.3  | RFT Installation                     |  |
|      | 3.1 Tools Required                   |  |
| 3.3. |                                      |  |
| -    | 3.3.2.1 Round Pole                   |  |
|      | 3.3.2.2 Square Pole                  |  |
| 3.3. | 3.3 Spar Installation                |  |
| 3.4  | LNA Installation                     |  |
| 3.5  | C-Band SSPA Installation             |  |
| 3.5. |                                      |  |
| 3.5. |                                      |  |
| -    | 3.5.2.1 Round Pole                   |  |
|      | 3.5.2.2 Square Pole                  |  |
| 3.5. | 5.3 Spar Installation                |  |

|       | TER 4. REDUNDANT SYSTEM INSTALLATION    |     |
|-------|-----------------------------------------|-----|
| 4.1 U | Jnpacking                               |     |
| 4.2 I | nspecting the Equipment                 |     |
| 4.2.1 | Included Parts                          |     |
| 4.3 I | RFT Installation                        |     |
| 4.3.1 | Tools Required                          |     |
| 4.3.2 | Vertical Pole Installation              |     |
| 4.3.  |                                         |     |
| 4.3.  | 2.2 Square Pole                         |     |
| 4.3.3 | Spar Installation                       |     |
| 4.3.4 | 1:1 Redundant Plate Installation        |     |
| 4.3.5 | 1:1 Redundant C-Band SSPA Installation  |     |
| 4.3.  |                                         |     |
| 4.3.  | - 1                                     |     |
| 4.3.6 | Spar Installation                       |     |
| 4.4 I | Redundancy Configuration Cabling Matrix |     |
| СНАР  | TER 5. OPERATION                        | 5–1 |
| 5.1 8 | System Operation                        |     |
| 5.2 I | Remote Control                          |     |
| 5.3 I | Front Panel Display/Keypad              |     |
| 5.3.1 | Front Panel Controls                    |     |
| 5.4 N | /lain Menu                              |     |
| 5.4.1 | Configuration                           |     |
| 5.4.2 | Monitor                                 |     |
| 5.4.3 | Faults                                  |     |
| СНАР  | TER 6. THEORY OF OPERATION              | 6–1 |
| 6.1 N | Aonitor and Control                     |     |
| 6.1.1 | EEPROM Memory                           |     |
| 6.1.2 | Remote Interface                        |     |
| 6.1.  | 2.1 Remote Interface Specification      |     |
| 6.1.3 | Terminal Default Conditions             |     |
| 6.1.4 | Theory of Operation                     |     |
| 6.1.5 | M&C Board Connector Pinouts             |     |
| 6.1.  |                                         |     |
| 6.1.  | <b>5</b>                                |     |
| 6.1.  |                                         |     |
| 6.1.  |                                         |     |
| 6.1.  |                                         |     |
| 6.1.6 | Test Points and LEDs                    |     |
| 6.2 I | ligh Stability Oscillator               |     |

| 6.2.  | 1 Specifications                      |      |
|-------|---------------------------------------|------|
| 6.3   | IF Local Oscillator                   |      |
| 6.3.  |                                       |      |
| 6.4   | Synthesizer                           |      |
| 6.4.  |                                       |      |
| 6.4.  |                                       |      |
| 6.5   | Down Converter                        |      |
| 6.5.  | 1 Specifications                      |      |
| 6.5.  | 2 Theory of Operation                 |      |
| 6.6   | Up Converter                          |      |
| 6.6.  | I                                     |      |
| 6.6.  | 2 Theory of Operation                 |      |
| СНА   | APTER 7. MAINTENANCE                  | 7–1  |
| 7.1   | Test Points and LEDs                  |      |
| 7.2   | Fault Isolation                       |      |
|       |                                       |      |
| CHA   | PTER 8. EQUIPMENT LIST                |      |
| 8.1   | Equipment List                        |      |
| 8.2   | Detail Equipment List                 |      |
| 8.2.  |                                       |      |
| 8.2.1 |                                       |      |
| 8.2.  | 1 0                                   |      |
| 8.2.4 | 4 Universal Mounting Kit              |      |
| APE   | NDIX A. CONFIGURATIONS                | A–1  |
| A.1   | 140 MHz Configuration                 |      |
| A.1.  |                                       |      |
|       | A.1.1.1 Specifications                |      |
| A.1.  | ,                                     |      |
|       | A.1.2.1 Specifications                |      |
|       | A.1.2.2 Theory of Operation           |      |
| A.1.  |                                       |      |
|       | A.1.3.1 Specifications                |      |
|       | A.1.3.2 Theory of Operation           |      |
| A.1.  | · · · · · · · · · · · · · · · · · · · |      |
|       | A.1.4.1 Specifications                |      |
| A     | A.1.4.2 Theory of Operation           | A–10 |
| ΔΡΡΙ  | ENDIX B. REMOTE CONTROL OPERATION     | B_1  |

| B.1 General |                                      | B–1 |
|-------------|--------------------------------------|-----|
| <b>B.2</b>  | Message Structure<br>Start Character | B-2 |
| B.2.1       | Start Character                      | B-2 |
| B.2.2       | Device Address                       | B-2 |
| B.2.3       | Command/Response                     | B–3 |
| B.2.4       | End Character                        | B–3 |
| B.3         | Configuration Commands/Responses     | B-4 |
| B.4         | System                               | В-б |
| B.5         | Status Commands/Responses            | B–7 |
| GLOS        | SARY                                 | g-1 |
| INDEX       |                                      | i-1 |


# Figures

|             | HPCST-5000                                                       |        |
|-------------|------------------------------------------------------------------|--------|
|             | Configurations Options                                           |        |
| Figure 1-3. | Typical View of Single Thread Installation                       | . 1–7  |
|             | 1:1 Redundant LNA Plate                                          |        |
|             | RSU-503L                                                         |        |
| Figure 1-6. | KP-10 Hand-Held keypad (Option)                                  | 1–13   |
| Figure 1-7. | RFT Dimensional Requirements                                     | 1–25   |
| Figure 1-8. | C-Band SSPA Dimensional Requirements                             | 1–26   |
|             | Single Thread Configuration Dimensional Requirements             |        |
| Figure 1-10 | 0. Standard Redundant Configuration Dimensional Requirements     | 1 - 28 |
| Figure 2-1. | RFT External Connections                                         | . 2–2  |
| Figure 2-2. | Serial Adapter Cables                                            | .2–6   |
|             | C-Band SSPA External Connections                                 |        |
|             | HPCST-5000 Single Thread Configuration Schematic                 |        |
|             | Installation of the LNA                                          |        |
|             | Procedures for Tightening the Waveguide Bolts                    |        |
| Figure 4-1. | HPCST-5000 Redundant System Schematic Using SSPAs                | .4–2   |
| Figure 4-2. | 1:1 Redundant Plate4                                             | 4–18   |
|             | Installation of LNA to Waveguide                                 |        |
| Figure 4-4. | Procedures for Tightening LNA to Waveguide Bolts                 | 4–20   |
|             | Redundant Configuration Cable Assembly Matrix                    |        |
| Figure 5-1. | Optional RFT-500 Terminal Keypad                                 | . 5–2  |
| Figure 5-2. | Main Menu                                                        | .5–4   |
|             | Select Configuration Menu                                        |        |
| Figure 5-4. | Select Monitor Menu                                              | . 5–9  |
|             | Select Faults Menu                                               |        |
| Figure 6-1. | M&C Board                                                        | .6–2   |
| Figure 6-2. | M&C Jumper Placement at JP3                                      | .6–3   |
|             | M&C Functional Block Diagram                                     |        |
| Figure 6-4. | High Stability Oscillator Block Diagram                          | 6–11   |
| Figure 6-5. | IF Local Oscillator Block Diagram                                | 6–13   |
|             | Down Converter Synthesizer Block Diagram                         |        |
|             | Up Converter Synthesizer Block Diagram                           |        |
|             | Down Converter Block Diagram                                     |        |
|             | Up Converter Block Diagram                                       |        |
|             | RFT-500 Inside Front View                                        |        |
|             | RFT-500 Inside Rear View                                         |        |
|             | Exploded View of a Typical LNA Connector Kit                     |        |
|             | 1:1 Redundant Configuration Cabling                              |        |
|             | Exploded View of Spar Mounting Kit (Single Thread Configuration) |        |
|             | Exploded View of Universal Mounting Kit                          |        |
|             | 1:1 Redundant System Universal Mounting Kit/3577                 |        |
|             | 1:1 Redundant System Universal Mounting Kit (KT/6700)            |        |
|             | . IF Local Oscillator Block Diagram                              |        |
|             | . LO Synthesizer Block Diagram                                   |        |
|             | . U/C LO Synthesizer Block Diagram                               |        |
|             | . Down Converter Block Diagram                                   |        |
| Figure A-5  | . Up Converter Block Diagram                                     | A-9    |

## Tables

| Table 1-2.HPCST-5000 Optiona.1–4Table 1-3.HPCST-5000 Redundant System.1–8Table 1-4.HPCST Models.1–14Table 1-5.Prime Power Specifications1–15Table 1-6.System Interfaces on Units1–15Table 1-7.Environmental Specification1–16Table 1-8.System Notor and Control.1–17Table 1-9.System Receive Characteristics1–19Table 1-10.System Transmit Characteristics.1–10Table 1-11.Leading Particulars1–20Table 1-12.RFT-500 Specifications1–21Table 1-13.C-Band SSPA Specifications1–23Table 1-13.C-Band SSPA Specifications1–22Table 2-1.Rear Panel Connectors.2–22Table 2-2.RFT Remote Control Connector, J62–5Table 2-3.C-Band SSPA External Connections.2–7Table 2-4.Table SPA Hasternal Connections.2–7Table 6-5.Reyna Ontrol, J2 DB15-Female.6–6Table 6-6.HPA, PS, U/C, and D/C, J3 DB37-Male6–6Cable 6-3.HPA, PS, U/C, and D/C, J3 DB37-Male6–10Table 6-6.High Stability Oscillator Specifications.6–12Table 6-7.IL Local Oscillator Specifications.6–12Table 6-7.HEA (SS) Specifications.6–12Table 6-7.Nuclease.6–12Table 6-7.Stability Oscillator Specifications.6–12Table 6-7.HEA (SS) Specifications.6–12Table 6-7.HIA (SS                                                                                                                                                                                                                                                                              | Table 1-1. HPCST-5000 Major Assemblies                  |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| Table 1-4. HPCST Models.1–14Table 1-5. Prime Power Specifications1–15Table 1-6. System Interfaces on Units1–15Table 1-7. Environmental Specification1–16Table 1-8. System Monitor and Control.1–17Table 1-9. System Receive Characteristics1–18Table 1-10. System Transmit Characteristics1–19Table 1-11. Leading Particulars1–20Table 1-12. RFT-500 Specifications1–21Table 1-13. C-Band SSPA Specifications1–21Table 1-14. LNA Specifications1–22Table 2-1. Rear Panel Connectors.2–2Table 2-2. RFT Remote Control Connector, J62–25Table 2-3. C-Band SSPA External Connections2–7Table 2-4. Eka-232/EIA-485 Remote Control (J1)6–6Table 6-4. Synthesizers (DC/UC/LO), J2 DB 15-Female6–6Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–10Table 6-6. High Stability Oscillator Specifications6–17Table 6-7. IL Local Oscillator Specifications6–17Table 6-8. Synthesizer Specifications6–17Table 6-9. Down Converter Specifications6–17Table 6-7. Table 6-8. Synthesizer Specifications6–17Table 6-7. Table 6-8. Synthesizer Specifications6–17Table 6-7. Table 6-8. Synthesizer Specifications6–12Table 6-7. Table | Table 1-2. HPCST-5000 Optiona                           |      |
| Table 1-5. Prime Power Specifications1–15Table 1-6. System Interfaces on Units1–15Table 1-7. Environmental Specification1–16Table 1-8. System Monitor and Control1–17Table 1-9. System Receive Characteristics1–18Table 1-10. System Transmit Characteristics1–19Table 1-11. Leading Particulars1–20Table 1-12. RFT-500 Specifications1–21Table 1-13. C-Band SSPA Specifications1–23Table 1-14. LNA Specifications1–23Table 1-14. Leading Particulars1–20Table 2-2. RFT Remote Control Connector, J62–2Table 2-3. C-Band SSPA External Connections2–2Table 2-4. C-Remote Relay Control, J2 DB15-Female6–6Table 6-5. Keypad Display, 24-Pin Ribbon Connect (J5)6–9Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–6Table 6-5. Keypad Display, 24-Pin Ribbon Connect (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizers (DC/UC/LO), J4 DB37-Female6–12Table 6-9. Down Converter Specifications6–12Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–12Table 6-9. Down Converter Specifications6–17Table 6-9. Table 6-8. Synthesizer Specifications6–12Table 7-7. Test Points7–2Table 7-7. Test Points7–2Table 7-8. Single Thread Sys                                                                                 |                                                         |      |
| Table 1-6.System Interfaces on Units1–15Table 1-7.Environmental Specification1–16Table 1-8.System Monitor and Control1–17Table 1-9.System Receive Characteristics1–18Table 1-10.System Transmit Characteristics1–19Table 1-11.Leading Particulars1–20Table 1-12.RFT-500 Specifications1–21Table 1-13.C-Band SSPA Specifications1–23Table 1-14.LNA Specifications1–24Table 2-11.Rear Panel Connectors, J62–2Table 2-2.RFT Remote Control Connector, J62–7Table 6-3.LEA-232/EIA-485 Remote Control (J1)6–6Table 6-3.LPA-2445 Remote Control (J1)6–6Table 6-3.LPA-2445 Remote Control (J1)6–6Table 6-3.LPA-24+ Dis DB37-Male6–6Table 6-3.LPA-24+ Dis Ribbon Connector (J5)6–9Table 6-4.Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-5.Keypad Display, 24-Pin Ribbon Connector (J5)6–10Table 6-7.IL Local Oscillator Specifications6–10Table 6-8.Synthesizer Specifications6–17Table 6-9.Down Converter Specifications6–10Table 6-10.Up Converter Specifications6–20Table 7-12.Test Points7–12Table 7-2.Test Points7–12Table 7-2.Test Points7–12Table 7-3.Shuthesizer Specifications6–10Table 7-4.Histolation7                                                                                                                                                                                                                                                                                       |                                                         |      |
| Table 1-7.Environmental Specification1–16Table 1-8.System Monitor and Control1–17Table 1-9.System Receive Characteristics1–18Table 1-10.System Transmit Characteristics1–19Table 1-11.Leading Particulars1–20Table 1-12.RFT-500 Specifications1–21Table 1-13.C-Band SSPA Specifications1–23Table 1-14.LNA Specifications1–23Table 2-1.Rear Panel Connectors.2–2Table 2-2.RFT Remote Control Connector, 162–5Table 2-3.C-Band SSPA External Connectors.2–7Table 6-1.EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2.Remote Relay Control, J2 DB15-Female6–6Table 6-3.HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4.Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5.Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6.High Stability Oscillator Specifications6–10Table 6-7.IL cocal Oscillator Specifications6–12Table 6-7.IL cocal Oscillator Specifications6–12Table 6-8.Synthesizer Specifications6–12Table 6-9.Down Converter Specifications6–12Table 6-10.Up Converter Specifications6–12Table 6-10.Up Converter Specifications6–12Table 6-11.HA2.Statt7–13Table 6-22.Test Points7–22Table 7-2.Test Points7–23 <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                                          |                                                         |      |
| Table 1-8. System Monitor and Control.1–17Table 1-9. System Receive Characteristics1–18Table 1-10. System Transmit Characteristics1–19Table 1-11. Leading Particulars1–20Table 1-12. RFT-500 Specifications1–21Table 1-13. C-Band SSPA Specifications1–21Table 1-14. LNA Specifications1–23Table 1-14. LNA Specifications1–24Table 2-1. Rear Panel Connectors2–25Table 2-2. RFT Remote Control Connector, J62–55Table 2-3. C-Band SSPA External Connections2–7Table 6-1. EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2. Remote Relay Control, J2 DB15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Female6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–7Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–17Table 6-10. Up Converter Specifications6–17Table 6-10. Up Converter Specifications6–17Table 6-12. Single Thread System7–23Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–1Table 8-3. Redundant System8–1Table 8-4. Synthesizer Specifications6–20Table 7-1. IF 1112.5 MHz Local Oscillator Specifications8–2Table 8-1. Single Thread System8–2 <td< td=""><td>Table 1-6. System Interfaces on Units</td><td> 1–15</td></td<>                             | Table 1-6. System Interfaces on Units                   | 1–15 |
| Table 1-9.System Receive Characteristics1–18Table 1-10.System Transmit Characteristics1–19Table 1-11.Leading Particulars1–20Table 1-12.RFT-500 Specifications1–21Table 1-13.C-Band SSPA Specifications1–23Table 1-14.LNA Specifications1–24Table 2-1.Rear Panel Connectors.2–2Table 2-2.RFT Remote Control Connector, J62–5Table 2-3.C-Band SSPA External Connections2–7Table 6-1.EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2.Remote Relay Control, J2 DB15-Female6–6Table 6-3.HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4.Synthesizers (DC/UC/LO), J4 DB37-Female6–6Table 6-5.Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-7.TL Local Oscillator Specifications6–10Table 6-7.TL Local Oscillator Specifications6–12Table 6-8.Synthesizer Specifications6–17Table 6-9.Down Converter Specifications6–17Table 6-9.Down Converter Specifications6–10Table 6-10.Up Converter Specifications6–12Table 6-11.Hack LEDs.7–1Table 6-12.Table 6-14Table 6-2.Reutinal SystemTable 7-3.Fault IsolationTable 7-3.Fault IsolationTable 7-3.Fault IsolationTable 7-3.Fault IsolationTable 7-3.Fault IsolationTable 8-2. </td <td>Table 1-7. Environmental Specification</td> <td> 1–16</td>                                                                                                                                                                                                            | Table 1-7. Environmental Specification                  | 1–16 |
| Table 1-10.System Transmit Characteristics1–19Table 1-11.Leading Particulars1–20Table 1-12.RFT-500 Specifications1–21Table 1-13.C-Band SSPA Specifications1–23Table 1-14.LNA Specifications1–24Table 2-1.Rear Panel Connectors.2–2Table 2-2.RFT Remote Control Connector, J62–5Table 2-3.C-Band SSPA External Connections2–7Table 6-1.EIA-232/EIA-485 Remote Control (J1).6–6Table 6-3.HPA, PS, U/C, and D/C, J3 DB37-Male6–6Table 6-4.Synthesizers (DC/UC/LO), J4 DB37-Female6–6Table 6-5.Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6.High Stability Oscillator Specifications6–10Table 6-7.IL Local Oscillator Specifications6–12Table 6-8.Synthesizer Specifications6–14Table 6-9.Down Converter Specifications6–17Table 6-10.Up Converter Specifications6–17Table 6-10.Up Converter Specifications6–12Table 6-10.Up Converter Specifications7–2Table 7-3.Fault Isolation7–2Table 8-2.Redundant System8–1Table 8-2.Redundant System8–1Table 8-2.Redundant System8–1Table 8-3.Specifications3–3Table 8-4.Synthesizer Specifications3–3Table 8-3.Specifications3–3Table 8-4.Single Thread System3–3 <td>Table 1-8. System Monitor and Control</td> <td> 1–17</td>                                                                                                                                                                                                                            | Table 1-8. System Monitor and Control                   | 1–17 |
| Table 1-11. Leading Particulars1–20Table 1-12. RFT-500 Specifications1–21Table 1-13. C-Band SSPA Specifications1–23Table 1-14. LNA Specifications1–24Table 2-1. Rear Panel Connectors2–2Table 2-2. RFT Remote Control Connector, J62–5Table 2-3. C-Band SSPA External Connections2–7Table 6-1. EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2. Remote Relay Control, J2 DB 15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–12Table 6-9. Down Converter Specifications6–12Table 6-9. Table 6-10. Up Converter Specifications6–12Table 6-10. Up Converter Specifications6–12Table 7-2. Test Points7–1Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–1Table 8-2. Redundant System8–1Table 8-3. Down Converter Specifications8–2Table 8-4.3. Down Converter Specifications8–3Table 8-3. Down Converter Specifications8–3Table 8-3. Bound Converter Specifications8–1Table 8-4.3. Down Converter Specifications8–3Table A-3. Do                                                                                                            | Table 1-9. System Receive Characteristics               | 1–18 |
| Table 1-12. RFT-500 Specifications1–21Table 1-13. C-Band SSPA Specifications1–23Table 1-14. LNA Specifications1–24Table 2-1. Rear Panel Connectors2–2Table 2-2. RFT Remote Control Connector, J62–5Table 2-3. C-Band SSPA External Connections2–7Table 6-1. EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2. Remote Relay Control, J2 DB15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–17Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–12Table 6-10. Up Converter Specifications6–12Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–1Table 8-3. Sport Specifications8–1Table 8-4.1 IF 1112.5 MHz Local Oscillator Specifications8–2Table 8-2. Synthesizer Specifications8–2Table 8-3. Sown Converter Specifications8–2Table 8-4.3 Down Converter Specifications8–2Table 8-3. Single Thread System8–2Table 8-4.3 Down Converter Specifications8–2Table 8-5. Step Specifications8–2Table 8-2. Synthesizer Specifications<                                                                                                                 | Table 1-10. System Transmit Characteristics             | 1–19 |
| Table 1-13. C-Band SSPA Specifications1–23Table 1-14. LNA Specifications1–24Table 2-1. Rear Panel Connectors2–2Table 2-2. RFT Remote Control Connector, J62–5Table 2-3. C-Band SSPA External Connections2–7Table 6-1. EIA-23/EIA-485 Remote Control (J1)6–6Table 6-2. Remote Relay Control, J2 DB15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–6Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–6Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-9. Up Converter Specifications6–12Table 6-10. Up Converter Specifications6–20Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–1Table 8-3. How Converter Specifications8–1Table 8-4. IF 1112.5 MHz Local Oscillator SpecificationsA–3Table A-3. Down Converter SpecificationsA–3                                                                                                                                                                                                                                                                                                                                                                                                               | Table 1-11. Leading Particulars                         |      |
| Table 1-14. LNA Specifications.1–24Table 2-1. Rear Panel Connectors.2–2Table 2-2. RFT Remote Control Connector, J6.2–5Table 2-3. C-Band SSPA External Connections2–7Table 6-1. EIA-232/EIA-485 Remote Control (J1).6–6Table 6-2. Remote Relay Control, J2 DB15-Female.6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female.6–9Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5).6–9Table 6-6. High Stability Oscillator Specifications.6–10Table 6-7. IL Local Oscillator Specifications.6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-9. Table 6-10. Up Converter Specifications6–10Table 7-1. M&C LEDs.7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-4. Single Thread System8–1Table 8-5. Requadant System8–1Table 8-6. All System8–1Table 8-7. Sepecifications7–2Table 7-2. Test Points7–2Table 6-10. Up Converter Specifications7–2Table 7-3. Fault Isolation7–3Table 8-7. Single Thread System8–1Table 8-8. Synthesizer Specifications8–2Table 8-1. IF 1112.5 MHz Local Oscillator Specifications8–2Table 8-2. Synthesizer Specifications4–3Table A-3. Down Converter Specifications4–3                                                                                                                                                                                 | Table 1-12. RFT-500 Specifications                      | 1–21 |
| Table 2-1. Rear Panel Connectors.2–2Table 2-2. RFT Remote Control Connector, J62–5Table 2-3. C-Band SSPA External Connections2–7Table 6-1. EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2. Remote Relay Control, J2 DB15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–1Table 8-3. Specifications8–1Table 8-4. IF 1112.5 MHz Local Oscillator SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 1-13. C-Band SSPA Specifications                  | 1–23 |
| Table 2-2. RFT Remote Control Connector, J62–5Table 2-3. C-Band SSPA External Connections2–7Table 6-1. EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2. Remote Relay Control, J2 DB15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-9. In M&C LEDs7–1Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–1Table 8-2. Redundant System8–2Table A-3. Down Converter Specifications8–3Table A-3. Down Converter Specifications7–3Table 8-2. Synthesizer Specifications8–1Table 8-3. Single Thread System8–1Table 8-4. South System8–1Table A-3. Down Converter Specifications8–2Table A-3. Down Converter Specifications8–1Table 8-2. Synthesizer Specifications8–2Table 8-3. Single Thread System8–1Table 8-4. South System8–1Table A-3. Down Converter SpecificationsA–3Table A-3. Down Converter SpecificationsA–3                                                                                                                                                                                               | Table 1-14. LNA Specifications                          |      |
| Table 2-3.C-Band SSPA External Connections2–7Table 6-1.EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2.Remote Relay Control, J2 DB15-Female6–6Table 6-3.HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4.Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5.Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6.High Stability Oscillator Specifications6–10Table 6-7.IL Local Oscillator Specifications6–12Table 6-8.Synthesizer Specifications6–14Table 6-9.Down Converter Specifications6–17Table 6-9.Down Converter Specifications6–20Table 7-1.M&C LEDs7–1Table 7-2.Test Points7–2Table 7-3.Fault Isolation7–3Table 8-1.Single Thread System8–1Table 8-2.Redundant System8–2Table 8-2.Synthesizer Specifications8–2Table 8-2.Synthesizer Specifications8–2Table 8-3.Single Thread System8–2Table 8-4.IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-3.Down Converter SpecificationsA–3Table A-3.Down Converter SpecificationsA–3Table A-3.Down Converter SpecificationsA–3Table A-3.Down Converter SpecificationsA–3Table A-3.Down Converter SpecificationsA–3                                                                                                                                                                                                                                                                                                                          |                                                         |      |
| Table 6-1. EIA-232/EIA-485 Remote Control (J1)6–6Table 6-2. Remote Relay Control, J2 DB15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table 8-2. Synthesizer Specifications8–2Table 8-2. Synthesizer Specifications8–2Table 8-3. Synthesizer Specifications8–2Table 8-4.1. IF 1112.5 MHz Local Oscillator Specifications8–2Table A-3. Down Converter SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 2-2. RFT Remote Control Connector, J6             |      |
| Table 6-2. Remote Relay Control, J2 DB15-Female6–6Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |      |
| Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male6–7Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–1Table 8-2. Synthesizer Specifications8–2Table 8-3. Down Converter Specifications8–2Table 8-4. IF 1112.5 MHz Local Oscillator SpecificationsA–3Table A-3. Down Converter SpecificationsA–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Table 6-1. EIA-232/EIA-485 Remote Control (J1)          |      |
| Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female6–8Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |      |
| Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)6–9Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male          |      |
| Table 6-6. High Stability Oscillator Specifications6–10Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |      |
| Table 6-7. IL Local Oscillator Specifications6–12Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5) |      |
| Table 6-8. Synthesizer Specifications6–14Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |      |
| Table 6-9. Down Converter Specifications6–17Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 6-7. IL Local Oscillator Specifications           |      |
| Table 6-10. Up Converter Specifications6–20Table 7-1. M&C LEDs7–1Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 6-8. Synthesizer Specifications                   |      |
| Table 7-1.M&C LEDs.7-1Table 7-2.Test Points7-2Table 7-3.Fault Isolation7-3Table 8-1.Single Thread System8-1Table 8-2.Redundant System8-2Table A-1.IF 1112.5 MHz Local Oscillator SpecificationsA-2Table A-2.Synthesizer SpecificationsA-3Table A-3.Down Converter SpecificationsA-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 6-9. Down Converter Specifications                | 6–17 |
| Table 7-2. Test Points7–2Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |      |
| Table 7-3. Fault Isolation7–3Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 7-1. M&C LEDs                                     |      |
| Table 8-1. Single Thread System8–1Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table 7-2. Test Points                                  |      |
| Table 8-2. Redundant System8–2Table A-1. IF 1112.5 MHz Local Oscillator SpecificationsA–2Table A-2. Synthesizer SpecificationsA–3Table A-3. Down Converter SpecificationsA–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 7-3. Fault Isolation                              |      |
| Table A-1. IF 1112.5 MHz Local Oscillator Specifications       A-2         Table A-2. Synthesizer Specifications       A-3         Table A-3. Down Converter Specifications       A-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table 8-1. Single Thread System                         |      |
| Table A-2. Synthesizer Specifications       A–3         Table A-3. Down Converter Specifications       A–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 8-2. Redundant System                             |      |
| Table A-3. Down Converter Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table A-2. Synthesizer Specifications                   | A–3  |
| Table A-4. Up Converter Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table A-3. Down Converter Specifications                | A–5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table A-4. Up Converter Specifications                  | A–8  |

This page is intentionally left blank.



This chapter describes the HPCST-5000 C-Band satellite terminal, referred to in this manual as "the HPCST-5000" (refer to Figure 1-1).

**Note:** The basic manual will reflect the 70 MHz configuration. Refer to Appendix A for other options.

#### 1.1 Description



Figure 1-1. HPCST-5000

The HPCST-5000 is a complete, high-power C-Band satellite terminal system consisting of the following components (Table 1-1):

| Nomenclature                       | Description                                                         |  |
|------------------------------------|---------------------------------------------------------------------|--|
| Single-Thread Configuration        |                                                                     |  |
| Low Noise Amplifier (LNA)          | 65° KLNA with TRF (Optional: Noise Temperatures available)          |  |
| Radio Frequency Transceiver (RFT)  | Consists of an:                                                     |  |
|                                    | • Up converter with 70 (140) MHz IF input                           |  |
|                                    | • Down converter with a 70 (140) MHz IF output                      |  |
|                                    | M&C microprocessor                                                  |  |
|                                    | • Power supply                                                      |  |
| Solid-State Power Amplifier (SSPA) | Consists of a solid-state power amplifier.                          |  |
| Redundancy Configuration           |                                                                     |  |
| 1:1 Redundant LNA Plate            | Consists of transmit reject filter, redundant LNAs (65°K), and a C- |  |
|                                    | Band waveguide switch.                                              |  |
| Radio Frequency Terminal (RFT)     | Consists of two radio frequency terminal (RFT) assemblies.          |  |
| C-Band SSPA Assembly               | Consists of two solid-state power amplifiers.                       |  |
| Redundancy Switch Unit (RSU-503L)  | Along with a redundancy cable/hardware kit, the RSU-503L            |  |
|                                    | provides the system with a single M&C interface, redundancy         |  |
|                                    | switchover control, and cabling.                                    |  |

Table 1-1. HPCST-5000 Major Assemblies

The HPCST-5000 outdoor terminal consists of weatherproof components for uplink and downlink requirements. The redundant assemblies have been designed for antenna or pole mounting. The system has a single user interface connector for remote M&C.

In the TX (uplink) direction, the terminal accepts a 70 (140) MHZ IF signal and TX it in the 5.850 to 6.425 GHz frequency band. This output is coupled through an N-type connector to the external high power amplifier (SSPA) assembly.

In the redundant system, a high power output to the antenna through a waveguide transfer switch is provided. A high-power termination is included on the offline channel port of the waveguide switch for testing.

In the RX (downlink) direction, the terminal accepts an RF signal in the 3.6 to 4.2 GHz band, and converts the signal to a 70 (140) MHz IF output. The LNA assembly has a type-N coax output routed to RFT RX RF inputs. The RFT TX output power level at 1 dB compression used to drive the external SSPA is +8 dBm maximum. The up and down converters are dual conversion, configured with a single or dual synthesizer for TX and RX transponder selection.

The onboard microcomputer monitors and controls (M&C) the operational parameters of the HPCST-5000 components. The M&C system enables the user to locally or remotely control functions such as:

- Output power level
- TX/RX channel frequency
- Output On/Off

The system also reports terminal configuration status, as well as fault status of all HPCST-5000 components.

The RFT terminal can be initially configured by a keyboard/LCD controller within the enclosure, or by connection of a common ASCII/EIA-232 terminal connected to the serial port at the redundancy system interface connector (RSU [J16]). A command set to allow configuration control and retrieval of status information. If the customer M&C control unit is a sophisticated M&C station computer; the serial port can be set to EIA-485 for bus operation.

#### 1.2 Applications

When used in conjunction with EFData modems, the HPCST-5000 is ideal for:

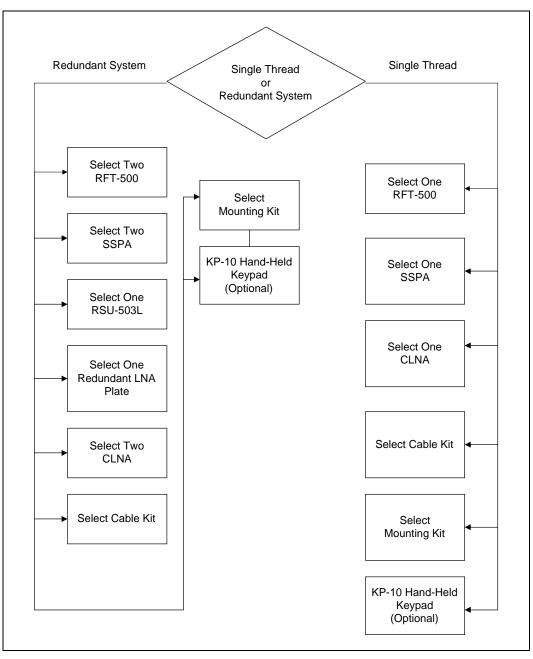
- Single digit carriers up to 2.048 Mbit/s.
- Multiple carrier operation over a 36/72 MHz bandwidth.

Note: Refer to Appendix A for the 140 MHz configuration.

Because the HPCST-5000 has a 70 MHz IF input, it can also be used for other analog and digital applications.

Small-to-medium size earth stations are easily constructed and commissioned with the HPCST-5000.

When used with a high-gain antenna, the HPCST-5000 can also be used as the Radio Frequency (RF) electronics of a central hub in point-to-multipoint applications, as well as serve as the terminal for the end points of a network.


## 1.3 Options

Refer to Table 1-2 for HPCST-5000 options.

| Wattage, W | Cable/Hardware Kit | (Output) Crossguide<br>Coupler |
|------------|--------------------|--------------------------------|
| 75         | Standard Duplex    | None                           |
| 100        | Standard TX Only   | 40 dB                          |
| 125        |                    |                                |
| 150        |                    |                                |

#### Table 1-2. HPCST-5000 Options

Refer to Figure 1-2 for configuration options.



**Figure 1-2. Configuration Options** 

#### 1.4 Configurations

The HPCST-5000 can be ordered with various configurations, including:

- Single Thread Configuration
- 1:1 Redundant Configuration

#### 1.4.1 Single Thread Configuration

Note: Refer to Section 3 for a detailed description of the single thread configuration.

The HPCST-5000 outdoor terminal consists of weatherproof components for uplink and downlink requirements. The single thread configuration (Figure 1-3) has been designed for antenna or pole mounting. The HPCST-5000 has a single customer-interface connector for remote monitor and control.

The on-board microcomputer monitors and controls the operational parameters. This Monitor and Control (M&C) system enables the customer to locally or remotely control functions such as:

- Input/Output attenuator level
- TX Output On/Off
- TX/RX channel frequency

The HPCST-5000 reports terminal configuration status, as well as fault status of all components. The RFT-500 can be initially configured by an optional on-board keypad, or an optional KP-10 Hand-Held Keypad, or by a connection of a common ASCII/EIA-232 or EIA-485 terminal connected to the serial port at the system interface connector (P1). A simple command set allows configuration control and retrieval of status information.

Refer to the KP-10 Hand-Held Keypad, Installation and Operation Manual.

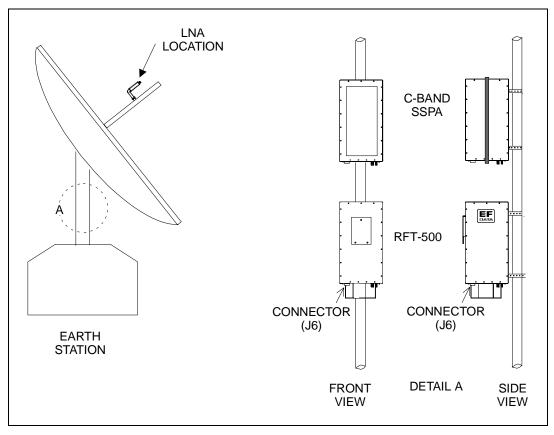



Figure 1-3. Typical View of Single Thread Installations

#### 1.4.2 Redundant System

Note: Refer to Section 4 for a detailed description of the redundancy configuration.

Refer to Table 1-3 for typical HPCST-5000 redundant system components.

| Nomenclature                      | Description                                            |
|-----------------------------------|--------------------------------------------------------|
| 1:1 Redundant LNA Plate           | Consists of transmit reject filter, redundant LNAs     |
|                                   | (65°K), and a C-Band waveguide switch.                 |
| Radio Frequency Terminal (RFT)    | Consists of two radio frequency terminal (RFT)         |
|                                   | assemblies. Each RFT includes an up converter, a       |
|                                   | down converter, an M&C microprocessor, and a           |
|                                   | power supply.                                          |
| C-Band SSPA Assembly              | Consists of two high-power SSPAs and a waveguide       |
|                                   | switch, high-power termination and connecting          |
|                                   | waveguide.                                             |
| Redundancy Switch Unit (RSU-503L) | Along with a redundancy cable/hardware kit, the RSU-   |
|                                   | 503L provides the system with a single M&C             |
|                                   | interface, redundancy switchover control, and cabling. |

Table 1-3. HPCST-5000 Redundant System

**Note:** For more information, refer to *RSU-503 Redundancy Switch Unit Installation and Operation Manual.* 

The HPCST-5000 system outdoor terminal components are weatherproof units for the uplink and downlink requirements. The redundant assemblies have been designed for antenna or pole mounting. The HPCST-5000 system has a single customer-interface connector for remote monitor and control.

The on-board microcomputer monitors and controls the operational parameters. This M&C system enables the user to locally or remotely control functions such as:

- Input/Output attenuator level
- Output On/Off
- Transmit/Receive channel frequency

The HPCST-5000 reports terminal configuration status, as well as fault status of all components. The RFT can be initially configured by an optional on-board keypad or an optional KP-10 Hand-held Keypad, or by connection of a common ASCII/EIA-232 or EIA-485 terminal connected to the serial port at the system interface connector. A simple command set allows configuration control and retrieval of status information.

#### 1.5 Component Descriptions

#### 1.5.1 Radio Frequency Transceiver (RFT)

The RFT-500 assembly is a weatherproof enclosure housing the following:

- Up and down converters
- Frequency synthesizer
- M&C system
- Power supply and cables, which interface with an antenna subsystem

In the TX (uplink) direction, the terminal accepts a 70 (140) MHZ IF signal and transmits it in the 5.845 to 6.425 GHz frequency band. This output is coupled through an N-type connector to the external high power amplifier (SSPA) assembly. The redundant system provides the high power output to the antenna through a waveguide transfer switch. A high-power termination is included on the offline channel port of the waveguide switch for testing.

In the RX (downlink) direction, the terminal accepts an RF signal in the 3.6 to 4.2 GHz band, and converts the signal to a 70 (140) MHz IF output. The LNA assembly has a type-N coax output routed to RFT RX RF inputs.

The RFT TX output power level at 1 dB compression used to drive the external SSPA is +8 dBm maximum. The up and down converters are dual conversion, configured with a single or dual synthesizer for TX and RX transponder selection.

The microprocessor provides:

- On-line loop monitoring
- Dynamic control functions
- Configuration control
- Fault/status monitoring
- Serial computer/terminal interface

#### 1.5.2 Low Noise Amplifier (LNA)

The low noise amplifier (LNA) assembly consists of a TX reject filter, waveguide switch, and two 65°K low-noise 50 dB gain amplifiers.

#### 1.5.3 Solid-State Power Amplifier (SSPA)

Note: Refer to the SSPA Installation and Operational Manual for additional data.

The SSPA is available in:

- 75W
- 100W
- 125W
- 150W

The SSPA consists of the following subassemblies:

- Power amplifier
- Output waveguide assembly
- RF input isolation circuit

The SSPA is forced air cooled by a fan controlled by a thermal switch. The cooling fan is configured for 48 VDC operation. Depending upon the environmental conditions, the heat sink fins may become obstructed by debris, reducing the efficiency of the cooling system. The heat sink fins may require periodic maintenance in the form of removing debris.

#### 1.5.4 Monitor and Control (M&C)

An on-board microcomputer monitors and controls all operational parameters and system status of the HPCST-5000. This powerful M&C system enables the user to locally or remotely control functions such as:

- TX/RX attenuator settings.
- TX/RX channel frequencies.

#### 1.5.5 1:1 Redundant LNA Plate

The 1:1 redundant LNA plate provides noise temperature equivalent of 65°K and consists of two LNAs, waveguide switch (see Figure 1-4), and transmit reject filter.

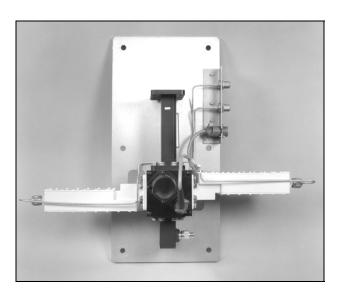



Figure 1-4. 1:1 Redundant LNA Plate

**Note:** Other LNAs are available. Contact EFData Customer Support for more information.

#### 1.5.6 Redundant Switch Unit (RSU)

The RSU-503L (Figure 1-5) is an all-weather unit that provides for primary and backup operation as a communications terminal. The RSU is designed for mounting on either the antenna or support pole. The RSU controls the switching from primary to backup service in a 1:1 redundant configuration.

For information on the RSU-503L, refer to the *RSU-503 Redundancy Switch Unit Installation and Operation Manual*.



Figure 1-5. RSU-503L

#### 1.5.7 KP-10 Hand-Held Keypad (Optional)

The optional KP-10 (Figure 1-6) is a handheld keypad that provides portable, external access for controlling Radio Frequency Terminals (RFTs) which are components of a CST, HPCST, or KST satellite terminal.

The KP-10 is typically used for initial set up or occasional changes to the configurations of RFTs, in both single and redundant systems. When the KP-10 is used with a redundant system, it is connected to an EFData redundancy switch unit.

Refer to the KP-10 Hand-Held Keypad, Installation and Operation Manual.

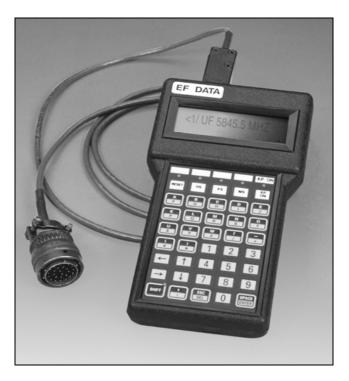



Figure 1-6. KP-10 Hand-Held Keypad (Optional)

## 1.6 High-Power C-Band Satellite Terminal Models

The HPCST is specifically designed for outdoor installation for earth station satellite communication. Because of the design, the units can be mounted on the antenna or the pole reducing transmission losses to the antenna feed. Refer to Table 1-4 for the HPCST model configurations.

| Band   | Model #    | Frequency              | Rated TX/RF<br>Power, W |
|--------|------------|------------------------|-------------------------|
| C-Band | HPCST-5000 | TX: 5.845 to 6.425 GHz | 75                      |
|        |            |                        | 100                     |
|        |            |                        | 125                     |
|        |            |                        | 150                     |
| C-Band | HPCST-5000 | RX: 3.620 to 4.200 GHz | N/A                     |

#### Table 1-4. HPCST Models

#### 1.7 HPCST-5000 Specifications

## 1.7.1 Prime Power Specification

Refer to Table 1-5 for prime power specifications.

| Assembly  | Ref Des | Option | Prime Power/Power Consumption             |
|-----------|---------|--------|-------------------------------------------|
| RFT-500   | J5      | AC     | 90 to 265 VAC, 47 to 63 Hz, 90W           |
| SSPA-500: |         |        | Prime Power/Power Consumption             |
| 75W       | J5      | AC     | 90 to 265 VAC, 47 to 63 Hz, 500W          |
| 100W      | J5      | AC     | 90 to 265 VAC, 47 to 63 Hz, 700W          |
| 125W      | J5      | AC     | 90 to 265 VAC, 47 to 63 Hz, 800W          |
| 150W      | J5      | AC     | 90 to 265 VAC, 47 to 63 Hz, 1000W         |
| LNA       |         | DC     | $10.8 \pm 0.2$ VDC (as provided from RSU) |
| RSU-503L  | J4, J8  | DC     | 10.8 VDC (from either RFT-500)            |

#### 1.7.2 System Interfaces

Refer to Table 1-6 for system interfaces on units.

| Description                | Туре                                         |  |
|----------------------------|----------------------------------------------|--|
| RFT-500:                   |                                              |  |
| TX IF Input (J1)           | TNC female, 50Ω, VSWR 1.5:1 maximum          |  |
| RX IF Output (J3)          | TNC female, 50Ω, VSWR 1.5:1 maximum          |  |
| RX RF Input (J4, C-Band)   | N, female, VSWR 1.5:1 maximum                |  |
| TX RF Output (J2, C-Band)  | N, female, VSWR 1.5:1 maximum                |  |
| M&C Control (J6)           | Circular, PT06E-16-26S                       |  |
| SSPA-500:                  |                                              |  |
| RF TX Output (W/G)         | CPR-137G, VSWR: 1.25:1 maximum               |  |
| RF TX Input (J1, C-Band)   | N, female, VSWR 1.25:1 maximum               |  |
| RF TX Monitor (J4, C-Band) | N, female, VSWR 1.3:1, typical 40 dB coupler |  |
| M&C Control (J3)           | Circular, PT06E-16-26S                       |  |
| LNA:                       |                                              |  |
| RF RX Input (W/G)          | CPR-229G, VSWR: 1.25:1 maximum               |  |
| RF RX Output (2X)          | N, VSWR 1.5:1 maximum., female               |  |
| 1:1 Switch Control         | Circular, PT06E-14-19P                       |  |

 Table 1-6.
 System Interfaces on Units

| Description                        | Туре                               |
|------------------------------------|------------------------------------|
| RS-503L:                           |                                    |
| M&C for RFT #A (J4)                | Circular, PT06E-16-26S             |
| IF RX Input (J2)                   | TNC, female                        |
| IF TX Output (J1)                  | TNC, female                        |
| M&C for RFT #B (J8)                | Circular, PT06E-16-26S             |
| IF RX Input (J6)                   | TNC, female                        |
| IF TX Output (J5)                  | TNC, female                        |
| Remote M&C (J16)                   | Circular, PT06E-16-26S             |
| IF RX Output (J15)                 | TNC, female                        |
| IF TX Input (J14)                  | TNC, female                        |
| Waveguide Switch (J10)             | Circular, PT06E-14-19S             |
| M&C Single Thread System with SSPA | Circular, KPT06E-16-26P on RFT-500 |
| M&C 1:1 System with SSPA           | Use J16 on RSU-503L                |
| Waveguide TX Switch with SSPA      | Circular, MS3112E-14-6S            |

 Table 1-6.
 System Interfaces on Units (Continued)

#### 1.7.3 System Environment Specification

Refer to Table 1-7 for environmental conditions.

| Environment     | Conditions                                           |
|-----------------|------------------------------------------------------|
| Temperature:    |                                                      |
| Operating       | -40° to +50°C (-40° to 122°F)                        |
| Survival        | -50° to +70°C (-58° to 158°F), non-operating         |
| Vibration       | 1.5g, 5 to 200 Hz and normal transportation levels   |
| Shock           | 6g maximum                                           |
| Humidity        | 0% to 100% relative at -40° to +50°C (-40° to 122°F) |
|                 | 95% at 55°C (131°F ) for 72 hours                    |
| Precipitation   | MIL-STD-810/Method 506.2                             |
| Salt Fog        | MIL-STD-810/Method 509.2                             |
| Sand and Dust   | MIL-STD-810/Method 510.1                             |
| Altitude:       |                                                      |
| Operation       | 0 to 10,000 ft, derate 2°C/1000 ft ASL               |
| Survival        | 0 to 40,000 ft                                       |
| Solar Radiation | 360 BTU/hr/ft <sup>2</sup> at 50°C (122°F)           |
| Safety          | EN60950 (IEC-950, UL 1950)                           |
| Emissions       | EN55022, Class A (FCC Part 15J, Class A)             |
| Immunity        | EN50082-1                                            |

| Table 1-7. | Environmental | Specifications |
|------------|---------------|----------------|
|------------|---------------|----------------|

#### 1.7.4 HPCST-5000 Monitor and Control

The HPCST-5000 terminal system has a single interface connector (J16) located on the RSU-503L for redundant configurations. For single thread configuration, the M&C is connected to connector (P1) on the RFT-500. The interface provides the customer with control of the terminal system redundant configuration including the C-Band SSPA through the integrated system cable harness. The options for customer control of the terminal system are provided in Table 1-8.

| System Type                   | Interface                  | M&C Options                                                              |
|-------------------------------|----------------------------|--------------------------------------------------------------------------|
| HPCST-5000 Terminal<br>System | EIA-232/EIA-485 Serial Bus | On-board Keypad, KP-10 Handheld<br>Keypad, or ASCII terminal through J16 |
|                               |                            | of the RSU-503L.                                                         |

#### **Table 1-8. System Monitor and Control**

### 1.7.5 System Receive Characteristics

The RX performance is defined for the C-Band LNA input to the 70 (140) MHz output of the RFT-500. Intervening cable losses due to installation variables must be accounted for when comparing to the performance data provided in Table 1-9.

| Receiver Characteristics                        |                                              |                     |  |
|-------------------------------------------------|----------------------------------------------|---------------------|--|
| Input Frequency Range                           | 3.625 to 4.200 GHz in 2                      | .5 MHz steps        |  |
|                                                 | (Optional: 125 kHz)                          |                     |  |
| Frequency Sense                                 | No inversion                                 |                     |  |
| Input Level                                     | -127 to -80 dBm                              |                     |  |
| RX Gain                                         | 95 dB minimum                                |                     |  |
| Adjust (0.05 dB typical steps, 1 dB maximum)    | 0 to 20 dB minimum (re                       | motely controlled)  |  |
| RX Frequency Stability                          | ± 1 x 10 <sup>-8</sup> at 23°C (73°F         | )                   |  |
| Life RX Frequency Stability                     | $\pm 1 \ge 10^{-7}$ at 23°C (73°F            | )                   |  |
| Gain Flatness                                   | ± 1.0 dB/36 MHz                              |                     |  |
|                                                 | $\pm$ 0.25 dB/4 MHz                          |                     |  |
| RX IF Output Bandwidth                          | $70 \pm 18$ MHz at 1 dB                      |                     |  |
| -                                               | (Optional: $140 \pm 36$ MH                   | Iz at 2 dB)         |  |
| Noise Figure                                    | 65° K (other options available)              |                     |  |
| TX Frequency Reject                             | 60 dBm                                       |                     |  |
| RX image Rejection                              | -45 dBm                                      |                     |  |
| Linearity (Third order intercept)               | Intermods < -35 dBc for two tones at -89 dBm |                     |  |
|                                                 | at 95 dB gain.                               |                     |  |
| Group Delay (any 36 MHz):                       | IESS-309 (Fig. 3) < 10ns                     |                     |  |
| Linear                                          | 0.28 ns/MHz                                  |                     |  |
| Parabolic                                       | $0.025 \text{ ns/MHz}^2$                     |                     |  |
| Ripple                                          | 1 ns P–P                                     |                     |  |
| Synthesizer Lock Time                           | < 1 second                                   |                     |  |
| Phase Noise (SSB) at:                           | (Maximum)                                    | Or < 2.8° rms (DSB) |  |
| 10 Hz                                           | -30 dBc/Hz                                   | integrated 10 Hz to |  |
| 100 Hz                                          | -60 dBc/Hz                                   | 1 MHz               |  |
| 1 kHz                                           | -70 dBc/Hz                                   |                     |  |
| 10 kHz                                          | -75 dBc/Hz                                   |                     |  |
| 100 kHz                                         | -80 dBc/Hz                                   |                     |  |
| Spurious (signal related) at 0 dBm RX IF output | -40 dBc                                      |                     |  |
| Inband Overdrive                                | No damage to 0 dBm                           |                     |  |
| Third Order Intercept                           | +25 dBm minimum                              |                     |  |
| RX IF Output at 1 dB Compression                | +15 dBm minimum                              |                     |  |

#### 1.7.6 System Transmit Characteristics

TX characteristics for the system are provided in Table 1-10.

**Note:** 1 dB compression characteristic is measured at the output flange of the C-Band SSPA.

| Transmit Characteristics                     |                                               |                |                  |                |
|----------------------------------------------|-----------------------------------------------|----------------|------------------|----------------|
| Frequency Range                              | 5.845 to 6.425 GHz, in 2.5 MHz steps          |                |                  |                |
|                                              | (125 kHz optional)                            |                |                  |                |
| Small Signal Gain (10 dB backoff), Nominal   | 75W                                           | 100W           | 125W             | 150W           |
|                                              | 79 dB                                         | 80 dB          | 81 dB            | 82 dB          |
| TX IF Input Level Range                      | -35 to -25 dBm typical                        |                |                  |                |
| Power Output at P <sub>1dB</sub> ; (minimum) | 75W                                           | 100W           | 125W             | 150W           |
|                                              | 48 dBm                                        | 49 dBm         | 50 dBm           | 51 dBm         |
| TX IF Input Bandwidth at -1 dB               | $70 \pm 18$ MF                                | Hz (Optional:  | $140 \pm 36$ MHz | z)             |
| Gain: Stability (Overtemp)                   | ± 1.5 dB                                      |                |                  |                |
| Flatness                                     | ± 1.5 dB/36                                   | 5 MHz          |                  |                |
| Variation                                    | $\pm 2.0 \text{ dB}$                          |                |                  |                |
| Group Delay (any 36 MHz):                    | < 30 ns                                       |                |                  |                |
| Linear                                       | 0.28 ns/MF                                    | Iz             |                  |                |
| Parabolic                                    | $0.15 \text{ ns/MHz}^2$                       |                |                  |                |
| Ripple                                       | <1 ns P-P                                     |                |                  |                |
| TX Frequency Stability                       | $\pm 1 \times 10^{-8}$                        |                |                  |                |
| TX Synthesizer Lock-up Time                  | < 1 second                                    |                |                  |                |
| Spurious (not inter-mods) :                  | IESS-309, Para. 3.2.1                         |                |                  |                |
|                                              |                                               |                |                  |                |
| At 6 dB backoff from P1 dB                   | -40 dBc min. ( $\leq$ 2.048 MHz inform. rate) |                |                  |                |
|                                              | -50 dBc mi                                    | n. (> 2.048 M  | Hz inform. rat   | te)            |
| With Carrier Off                             |                                               |                |                  |                |
| with Carner On                               | - 24 dBm/4                                    | kHz (anywhe    | re in satellite  | band)          |
|                                              | - 32 dBm a                                    | t 6 dB backoff |                  |                |
| Intermod Spurious with two equal carriers    | - 52 ubii a                                   | t o ub backon  |                  |                |
|                                              | - 60 dBm a                                    | t 6 dB backoff | •                |                |
| Harmonics (out-of-band)                      |                                               |                |                  |                |
| Phase Noise (SSB) at:                        | (Maximum                                      | )              | Or < 2.8° r      | rms (DSB)      |
| 10 Hz                                        | -30 dBc/Hz                                    | 5              |                  | 10 Hz to 1 MHz |
| 100 Hz                                       | -60 dBc/Hz                                    |                |                  |                |
| 1 kHz                                        | -70 dBc/Hz                                    | S              |                  |                |
| 10 kHz                                       | -75 dBc/Hz                                    |                |                  |                |
| 100 kHz                                      | -80 dBc/Hz                                    |                |                  |                |

 Table 1-10.
 System Transmit Characteristics

#### 1.7.7 Leading Particulars

The physical size and weight of the terminal system components are provided in Table 1-11.

Note: A redundant system is twice the size and weight of the single system.

| Component                | Maximum Size and Weight                               |
|--------------------------|-------------------------------------------------------|
| RFT-500:                 |                                                       |
| Single Thread System:    |                                                       |
| Dimensions               | 23"L x 9.3" W x 10.3" H (58.42 x 23.62 x 26.16 cm)    |
| Weight                   | 40 lbs. (18.1 kg)                                     |
| SSPA-500:                |                                                       |
| Single Thread System:    |                                                       |
| Dimensions               | 18.5"L x 9.75"W x 9.25"H (46.99 x 24.76 x 23.49 cm)   |
| Weight                   | 35 lbs. (18.1 kg)                                     |
| 1:1 SSPA-500:            |                                                       |
| Redundant Configuration: |                                                       |
| Dimensions               | 29.75"L x 21.25"W x 9.25"H (75.56 x 53.97 x 23.49 cm) |
| Weight                   | 95 lbs. (43.09 kg)                                    |
| RSU-503L:                |                                                       |
| Dimensions               | 8.0"L x 11.0"W x 8.0"H (20.32 x 27.94 x 20.32 cm)     |
| Weight                   | 7.5 lbs (3.40 kg)                                     |
|                          |                                                       |
| LNA (Dual):              |                                                       |
| Dimensions               | 26.0"L x 21.0"W x 14"H (66.04 x 53.34 x 35.56 cm)     |
| Weight                   | 20 lbs (9.07 kg)                                      |

 Table 1-11. Leading Particulars

# 1.8 RFT Specification

Refer to Table 1-12 for RFT-500 specifications.

| Transmi                            | t Characteristics                         |                     |
|------------------------------------|-------------------------------------------|---------------------|
| Output Frequency (No Inversion)    | 5.845 to 6.425 GHz                        |                     |
| Input Frequency                    | $70 \pm 18$ MHz                           |                     |
|                                    | $140 \pm 36$ MHz (optional)               |                     |
| Output Power at 1 dB compression   | +8 dBm                                    |                     |
| Third Order Intercept              | +18 dBm (for +8 dBm)                      |                     |
| Nominal Small Signal Gain          | 26 dB (for +8 dBm)                        |                     |
| Gain Adjust Range                  | 0 to 25 dB, in 0.5 dB steps               |                     |
| Gain Variation:                    |                                           |                     |
| Over 36 MHz                        | ± 1 dB maximum                            |                     |
| Over 36 MHz, Temperature and Aging | ± 2 dB maximum                            |                     |
| Noise Figure:                      |                                           |                     |
| Maximum Attenuation                | 23 dB maximum                             |                     |
| Minimum Attenuation                | 15 dB maximum                             |                     |
| Group Delay (any 36 MHz):          | < 30 ns                                   |                     |
| Linear                             | 0.28 ns/MHz                               |                     |
| Parabolic                          | $0.15 \text{ ns/MHz}^2$                   |                     |
| Ripple                             | < 1 ns P-P                                |                     |
| Synthesizer Step Size              | 2.5 MHz (optional 125 kHz)                |                     |
| Phase Noise (SSB) at:              | $Or < 2.8^{\circ} rms (DSB)$              |                     |
| 10 Hz                              | -30 dBc/Hz                                | integrated 10 Hz to |
| 100 Hz                             | -60 dBc/Hz                                | 1 MHz               |
| 1 kHz                              | -70 dBc/Hz                                |                     |
| 10 kHz                             | -75 dBc/Hz                                |                     |
| 100 kHz                            | -80 dBc/Hz                                |                     |
| Frequency Stability:               |                                           | •                   |
| Annual at 23°C                     | ± 1 x 10 <sup>-7</sup>                    |                     |
| Over Temperature                   | $\pm 1 \ge 10^{-8}$ (-40° to +55°C) (-40° | )° to +131°F)       |
| After 30 Minutes Warm-up           | ± 1 x 10-8                                |                     |
| Electrical Adjustment              | 0.5 x 10-7                                |                     |
| Isolation on Fault Shutdown        | -60 dBc minimum                           |                     |
| Spurious:                          |                                           |                     |
| < 250 kHz Carrier Offset           | -35 dBc maximum                           |                     |
| > 250 kHz Carrier Offset           | -50 dBc maximum                           |                     |
| RF Output VSWR                     | 1.5:1 at 50Ω                              |                     |
| RF Output Connector                | N-Type female                             |                     |
| IF Input VSWR                      | 1.5:1 at 50Ω                              |                     |
| IF Input Connector                 | TNC female                                |                     |

| <b>Table 1-12.</b> | RFT-500 S | Specifications |
|--------------------|-----------|----------------|
|--------------------|-----------|----------------|

| H                                      | Receive Character            | ristics           |        |              |              |
|----------------------------------------|------------------------------|-------------------|--------|--------------|--------------|
| Input Frequency (No Inversion)         | 3.620 to 4.200 C             | GHz               |        |              |              |
| Output Frequency                       | $70 \pm 18$ MHz              |                   |        |              |              |
|                                        | $140 \pm 36 \text{ MHz}$ (   | optional)         |        |              |              |
| Output Power at 1 dB Compression       | +15 dBm                      |                   |        |              |              |
| Third Order Intercept                  | +25 dBm                      |                   |        |              |              |
| Gain Adjust Range (Typical, with LNA)  | 77 to 98 dB                  |                   |        |              |              |
| Gain Variation (with LNA):             |                              |                   |        |              |              |
| Over 36 MHz                            | ± 1.5 dB maxim               | um                |        |              |              |
| Over 36 MHz, Temperature and Aging     | ±4 dB maximu                 | n                 |        |              |              |
| Noise Temperature (with LNA)           | LNA specificati              | on                |        |              |              |
| Group Delay (any 36 MHz):              | < 30 ns                      |                   |        |              |              |
| Linear                                 | 0.28 ns/MHz                  |                   |        |              |              |
| Parabolic                              | $0.15 \text{ ns/MHz}^2$      |                   |        |              |              |
| Ripple                                 | < 1  ns P-P                  |                   |        |              |              |
| Synthesizer Step Size                  | 2.5 MHz (option              | nal 125 kHz)      |        |              |              |
| Phase Noise (SSB) at:                  | 2.5 MIL (0010                | 125 KHL)          |        | Or < 2       | 8° rms (DSB) |
| 10 Hz                                  | -30 dBc/Hz                   |                   |        |              | ted 10 Hz to |
| 10 Hz                                  | -50 dBc/Hz                   |                   |        | 1 MHz        |              |
| 1 kHz                                  | -00 dBc/Hz<br>-70 dBc/Hz     |                   |        | 1 101112     |              |
|                                        |                              |                   |        |              |              |
| 10 kHz                                 | -75 dBc/Hz                   |                   |        |              |              |
| 100 kHz                                | -80 dBc/Hz                   |                   |        |              |              |
| Frequency Stability:<br>Annual at 23°C | ± 1 x 10-7                   |                   |        |              |              |
| Over Temperature                       | -                            | o +55°C) (-40° to | 121    | ە <b>ت</b> ) |              |
| After 30 Minutes Warm-up               | $\pm 1 \times 10^{-8}$       | (-40)             | 7151   | 1)           |              |
| Electrical Adjustment                  | 0.5 x 10 <sup>-7</sup>       |                   |        |              |              |
| Spurious Non-Signal Related            | -60 dBm maxim                | um                |        |              |              |
| Image Rejection (All Conversions)      | > 35  dB                     |                   |        |              |              |
| Linearity                              |                              | dBc for two tone  | es at  |              |              |
| Lincuity                               | -89 dBm at 95 d              |                   | co ui  |              |              |
| RF Input VSWR                          | $1.5:1 \text{ at } 50\Omega$ | 25 guill          |        |              |              |
| RF Input Connector                     | Type N female                |                   |        |              |              |
| IF Output VSWR                         | $1.5:1 \text{ at } 50\Omega$ |                   |        |              |              |
| IF Output Connector                    | TNC female                   |                   |        |              |              |
|                                        | Monitor and Cor              | ntrol             |        |              |              |
| Control Interface                      | T                            | 85, or optional k | evhoar | ď            |              |
| Control Functions                      | SELECT                       | U/C ATTN          | -      | DRESS        | CAL.         |
|                                        | RF OUTPUT                    | D/C ATTN          | PAR    |              | REF ADJ      |
|                                        | U/C FREQ                     | PROGRAM           |        | PWR          | XFLT EN      |
|                                        | D/C FREQ                     | BAUD              |        | FLT_         | RSW MODE     |
|                                        |                              |                   |        | -            | LOCK MODE    |
| Monitor Functions                      | U/C TEMP                     |                   | TUV    | 7            |              |
|                                        | D/C TEMP                     |                   | TDV    | 7            |              |
|                                        | HPA TEMP                     | •                 | TIV    |              | •            |
| Fault Detect Functions                 | RESTART                      | 12V PWR           |        |              | U/C TUN      |
|                                        | UPLINK                       | HPA               |        |              | D/C LOCK     |
|                                        | DOWNLINK                     | LNA               |        |              | D/C TUN      |
|                                        | 5V PWR                       | U/C LOCK          |        |              | IF LOCK      |
|                                        |                              |                   |        |              | IF TUN       |

| <b>Table 1-12</b> . | <b>RFT-500</b>             | Specifications | (Continued) |
|---------------------|----------------------------|----------------|-------------|
| 1 abic 1-12.        | <b>M</b> <sup>1</sup> -500 | specifications | (Continucu) |

# 1.9 C-Band SSPA Specification

Refer to Table 1-13 for C-Band SSPA specifications.

| Parameter                               |                                            | 5            | Specification                  |              |
|-----------------------------------------|--------------------------------------------|--------------|--------------------------------|--------------|
| Power:                                  |                                            |              | _                              |              |
| Power Requirements                      | 90 to 230 VA                               | C, 47 to     | 63 Hz, single phase            |              |
| Power Consumption                       | 6A typical at                              | 110 VAC      |                                |              |
| Power Factor Correction                 | 95%, minimum                               |              |                                |              |
| Frequency Range                         | 5.845 to 6.45                              | 0 GHz        |                                | _            |
| Power Output (P <sub>1dB</sub> )        | <u>75 W</u>                                | <u>100 v</u> | <u>N 125 W</u>                 | <u>150 W</u> |
|                                         | 48                                         | 49           | 50                             | 51           |
| Small Signal Gain                       | <u>75 W</u>                                | 100          | <u>W 125 W</u>                 | <u>150 W</u> |
|                                         | 79                                         | 80           | 81                             | 82           |
| Gain Flatness (at room temperature),    | 2 dB P–P ove                               | er 600 MI    | łz                             |              |
| maximum                                 | 0.6 dB P–P o                               | ver 40 M     | Hz                             |              |
| Gain Slope                              | 0.015 dB/MHz, maximum                      |              |                                |              |
| Gain Variation                          | $\pm$ 1.5 dB over frequency and temp range |              |                                |              |
| Local Gain Adjustment                   | ± 3 dB, minimum                            |              |                                |              |
| Input Return Loss                       | 19 dB, minimum                             |              |                                |              |
| Output Return Loss                      | 19 dB, minimum                             |              |                                |              |
| Noise Figure at Maximum Gain            | 10 dB                                      |              |                                |              |
| Spurious Rated Power, maximum           | -65 dBc, maximum                           |              |                                |              |
| Harmonic at rated power                 | -60 dBc, maximum                           |              |                                |              |
| AM/PM Conversion at Rated Power         | 2.5°/dB                                    |              |                                |              |
| Third Order Intermodulation             | -34 dBc at 6 d                             | B backo      | ff from rated P <sub>1dB</sub> |              |
| (Two equal tones 5 MHz apart)           |                                            |              | ff from rated $P_{1dB}$        |              |
| Group Delay:                            |                                            |              |                                |              |
| Linear                                  | 0.02 ns/MHz                                |              |                                |              |
| Parabolic                               | 0.003 ns/MH                                | $z^2$        |                                |              |
| Ripple                                  | 1 ns P–P                                   |              |                                |              |
| Residual AM ( $F^*$ = Frequency in kHz) | -45 dBc                                    |              | 0 to 10 kHz                    |              |
|                                         | -20 (1+ log F                              | *) dBc       | 10 kHz to 500 kHz              | <u>c</u>     |
|                                         | -80 dBc                                    |              | 500 kHz to 1 MHz               |              |
| Phase Noise                             | Meets IESS-3                               | 808/-309     |                                |              |

| Table 1-13. | <b>C-Band SSPA</b> | Specifications |
|-------------|--------------------|----------------|
|             |                    | Specifications |

# 1.10 LNA Specification

Refer to Table 1-14 for LNA specification.

| Parameter                    | Specification                              |
|------------------------------|--------------------------------------------|
| Frequency                    | 3.620 to 4.200 GHz                         |
| Noise Temperature (with TRF) | 65°K maximum (lower temperatures optional) |
| Gain                         | 50 dB minimum, 54 dB nominal               |
|                              | (optional 60 dB)                           |
| Gain Flatness                | $\pm 1 \text{ dB}/575 \text{ MHz}$         |
| Gain vs. Temperature         | $\pm$ 3 dB maximum                         |
| 1 dB Compression Point       | +10 dBm minimum                            |
| Third Order Intercept        | +20 dBm minimum                            |
| Group Delay:                 |                                            |
| Linear                       | $\pm$ 0.01 ns/MHz maximum                  |
| Parabolic                    | 0.001 ns/MHz <sup>2</sup> maximum          |
| Ripple                       | 0.1 ns P-P                                 |
| Input VSWR                   | 1.25:1                                     |
| Output VSWR                  | 1.5:1                                      |
| Input Connector              | CPR229G (hold pressure to 0.5 PSIG)        |
| Output Connector             | Type N                                     |
| Spurious                     | Below thermal noise/100 kHz                |
| TRF Rejection                | 55 dB                                      |

## 1.11 Dimensional Drawings

Refer to Figure 1-7 for RFT dimensional requirements.

Note: All dimensions are in inches, centimeters are in parenthesis.

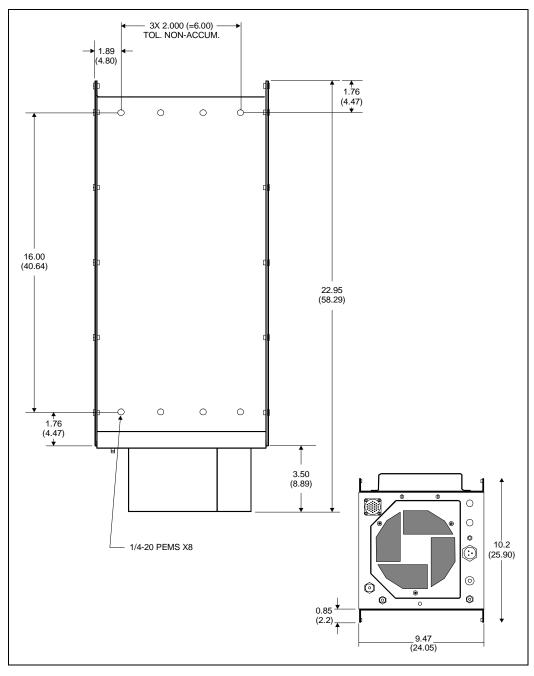
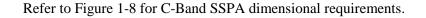
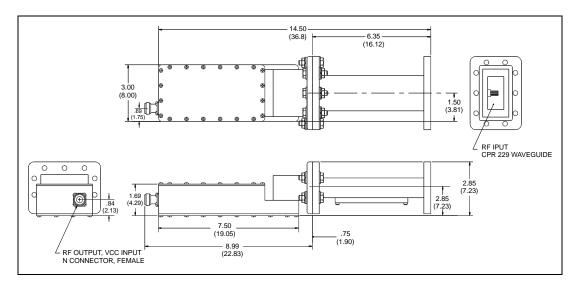




Figure 1-7. RFT Dimensional Requirements




A • 🗇 🔸 • 🔶 • • 🗇 • . ٠ ۲ ۵ ٠ ٠ . • 9.09 (23.08) 9.80 (24.89) • Ø 0.40 (6 PLACES) . • . • ٠ • • • • • • ₹2.54 (6.45) 1.47 (3.73) 9.07 (23.03) DIMENSION A 100W 125W 150W 75W 16.15 18.27 18.27 18.27 (40.89) (46.41) (46.41) (46.41)

Note: All dimensions are in inches, centimeters are in parenthesis.

Figure 1-8. C-Band SSPA Dimensional Requirements

Refer to Figure 1-9 and Figure 1-10 for standard LNA dimensional requirements.

Note: All dimensions are in inches, centimeters are in parenthesis.



**Figure 1-9. Single Thread Configuration Dimensional Requirements** 

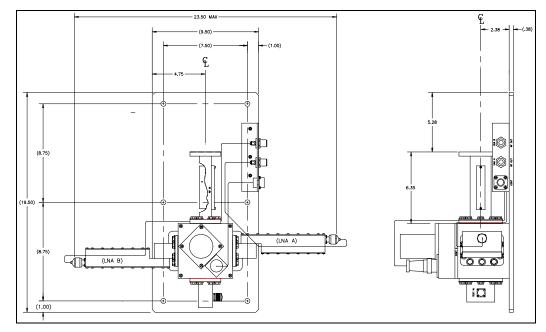



Figure 1-10. Standard Redundant Configuration Dimensional Requirements

# Chapter 2. EXTERNAL CONNECTIONS

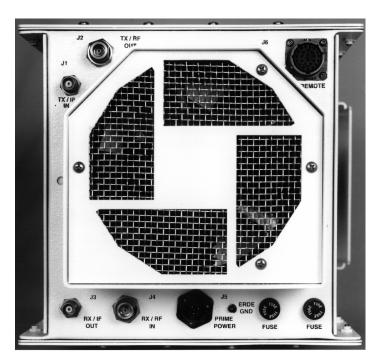
This chapter describes the external connections of the HPCST-5000 terminal system.



*Be alert when handling electrical equipment. Severe bodily harm may be the result.* 

### 2.1 External Connections

Recommended Standard (RS) designations have been superseded by the new designation of the Electronic Industries Association (EIA). Reference to the old designations are shown <u>only</u> when depicting actual text displayed on the screen of the unit (RS-232, RS-485, etc.). All other references in the manual will be shown with the EIA designation (EIA-232, EIA-485, etc.).


### 2.1.1 RFT External Connections

Connections between the RFT-500 and other equipment are made through six connectors. These connectors are listed in Table 2-1 and their locations are shown in Figure 2-1. The use of each connector is described in the following paragraphs.

Cables for connectors J2, J4, and J5 are supplied by EFData. A connector kit for the remote connector, J6, also is supplied. All other connections are customer-supplied.

| Name      | REF DES  | Connector Type  | Function                  |
|-----------|----------|-----------------|---------------------------|
| TX/IF IN  | J1       | TNC             | TX IF INPUT (70/140 MHz)  |
| TX/RF OUT | J2       | Type N          | 5.845 to 6.425 GHz Output |
| RX/IF OUT | J3       | TNC             | RX IF OUT (70/140 MHz)    |
| RX/RF IN  | J4       | Type N          | 3.620 to 4.200 GHz Input  |
| PRIME PWR | J5       | 3- or 4-pin CIR | Prime Power Input         |
| REMOTE    | J6       | 26-pin CIR      | Remote Interface          |
| GND       | ERDE GND | #10-32 Stud     | Chassis Ground            |

| Table 2-1. Rear Panel Connectors | Table 2-1. | Rear | Panel | Connectors |
|----------------------------------|------------|------|-------|------------|
|----------------------------------|------------|------|-------|------------|



**Figure 2-1. RFT External Connections** 

# 2.1.1.1 TX/IF Input (J1)

The TX/IF input is a TNC connector that receives the signal from the indoor unit. The input impedance is  $50\Omega$ , and the frequency is  $70 \pm 18$  MHz (optional  $140 \pm 36$  MHz).

The typical power level is from -45 to -25 dBm, depending on the configuration and application.

#### 2.1.1.2 **TX/RF Output (J2)**

The TX/RF output is a type N connector that sends the signal to the antenna. The output impedance is  $50\Omega$ . The output frequency range is from 5.845 to 6.425 GHz. The output 1 dB compression point is +8 dBm.

#### 2.1.1.3 RX/IF Output (J3)

The RX/IF output is a TNC connector that sends the received signal to the indoor unit. The output impedance is  $50\Omega$ , and the frequency is  $70 \pm 18$  MHz (optional 140  $\pm$  36 MHz).

The 1 dB output compression point is +15 dBm. Maximum output power operation is +9 dBm (-6 dB from 1 dB compression) to -50 dBm, depending on system gain requirements. The down converter has 26 to 47 dB of gain, and is adjustable by the customer from 0 to 21 dB of attenuation.

The typical system gain includes a 50 dB LNA, making the total system gain 76 to 97 dB.

**Note:** A 60 dB LNA is used only when there are extremely long cables from the LNA to the down converter and can be ordered as an option.

#### 2.1.1.4 **RX/RF Input (J4)**

The RX/RF input is a type N connector that receives the signal from the LNA. The input impedance is  $50\Omega$ . The input frequency range is from 3.620 to 4.200 GHz. The input signal level ranges between -50 and -25 dBm, depending on LNA and antenna gain.

The input level should be set to give the required signal level at J3, the RX/IF Output.

## 2.1.1.5 Prime Power (J5)

The AC power is supplied to the RFT by a 3-pin circular connector.

Normal input voltage is 90 to 265 VAC, 47 to 63 Hz, and 90W.

The AC pinout is as follows:

| Pin # | Name | Function     | Wire Color   |
|-------|------|--------------|--------------|
| А     | HI   | Line         | Brown        |
| В     | LO   | Neutral/Line | Blue         |
| С     | GND  | Ground       | Green/Yellow |

## 2.1.1.6 Serial Remote Control (J6)

The remote connector on the RFT is used to interface the M&C functions to a remote location. This interface can be either EIA-232 or EIA-485 (Figure 2-2).

When using an EIA-485 interface, the TX and RX signals are able to accommodate either type of remote equipment pinouts. As long as the polarities of the remote equipment TX and RX signals are correct, this remote interface will be completely compatible.

Refer to Table 2-2 for a list of pinouts for the J6 connector.

For standard EIA-232 or EIA-485 applications, an adapter cable must be used to connect the 26-pin connector (J6) to a standard 9-pin D.

| Pin # | Name        |         | Description                                              |
|-------|-------------|---------|----------------------------------------------------------|
|       | EIA-232     | EIA-485 |                                                          |
| А     | GND         | -RX/TX  | RX/TX Data                                               |
| В     |             | -RX/TX  | RX/TX Data                                               |
| С     |             | +RX/TX  | RX/TX Data                                               |
| D     | CTS         | +RX/TX  | Clear to Send (see Note 1)                               |
| Е     | RD/RX       |         | Receive Data                                             |
| F     | RTS         |         | Ready to Send (see Note 1)                               |
| G     | TD/TX       |         | Transmit Data                                            |
| Н     | DSR         |         | Data Set Ready                                           |
| J     |             | GND     | Ground                                                   |
| K     | LNA_PWR     |         | Output, 10V for powering LNA (see Note 2)                |
| L     | EXT_PWR     |         | Output voltage, 11V, to power RSU-503 and KP-10          |
| М     | EXT FLT     |         | Input, logic 0 or 5V: 5V = FLT, 0V = normal (see Note 3) |
| Ν     | N/C         |         |                                                          |
| Р     | SPARE       |         | N/C                                                      |
| R     | GND         |         | Ground                                                   |
| S     | SPARE       |         | N/C                                                      |
| Т     | PWR MON     |         | EXT HPA PWR Level Monitor (Future)                       |
| U     | UL_NC       |         | Uplink fault relay, connects to uplink COM with fault    |
| V     | UL_COM      |         | Uplink fault relay, COMMON                               |
| W     | UL_NO       |         | Uplink fault relay, opens with fault                     |
| Х     | DL_NC       |         | Downlink fault relay, connects to DL_COM with fault      |
| Y     | DL_COM      |         | Downlink fault relay, COMMON                             |
| Z     | DL_NO       |         | Downlink fault relay, opens with fault                   |
| а     | LNA PWR RTN |         | Return for LNA Power (see Note 2)                        |
| b     | EXT_TEMP    |         | EXT HPA Temperature Monitor                              |
| с     | ENAB/DISAB  |         | EXT HPA RF Enable                                        |

Table 2-2. RFT Remote Control Connector, J6

#### Notes:

- 1. In EIA-232 mode, CTS is tied to RTS.
- 2. LNA can be powered from these pins instead of through the RF cable.
- 3. 5V is a floating level.

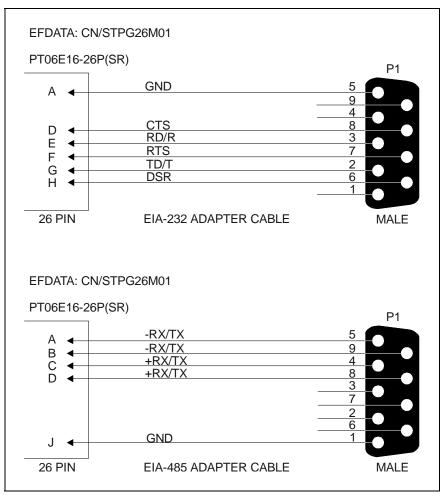



Figure 2-2. Serial Adapter Cables

## 2.1.1.7 Ground (GND)

A #10-32 stud is available on the rear of the unit for the purpose of connecting a common chassis ground among all of the equipment.

## 2.1.2 C-Band SSPA External Connections



Always terminate the output waveguide of the amplifier with an RF load capable of dissipating full CW RF power. Do not look into the output port of the powered RF amplifier. Severe bodily harm can be the result.

Connections between the C-Band SSPA and other equipment are made through five connectors. These connectors are listed in Table 2-3, and their locations are shown in Figure 2-3. The use of each connector is described in the following paragraphs.



Figure 2-3. C-Band SSPA External Connections

| Name                   | Ref Des | Connector Type     | Function                                                |
|------------------------|---------|--------------------|---------------------------------------------------------|
| RF Input               | J1      | N-Type, female     | RF Input                                                |
| Discrete Interface     | J3      | MS3112E16-26P (M)  | M&C port for RFT500                                     |
| RF Output Monitor Port | J4      | N-Type, female     | Independent M&C of output power levels (-40 dB coupled) |
| AC Line                | J5      | MS3102R16-10P (M)  | Prime Power Supply                                      |
| RF Output              | J7      | CPR-137G (Grooved) | W/G connection                                          |

### 2.1.2.1 RF Input (J1)

The RF Input is an N-type connector that receives the signal from the RF TX output of the RFT. The input impedance is  $50\Omega$ .

The input frequency range is from 5.845 to 6.425 GHz.

The input level should be set to give the required signal at J7, RF Output.

#### 2.1.2.2 Gain Control (J2)

The potentiometer located under the cover is used to set nominal system gain. Adjustment range is 6 dB minimum.

**Note:** Gain Control shall be covered with a sealed metal cover and secured with screws and washers.

### 2.1.2.3 Discrete Interface (J3)

The SSPA is controlled using a discrete interface. Control commands to the SSPA are collected from the monitor and control system of the RFT-500. The following table lists the dedicated pin outs for the 26-pin monitor and control connector of the SSPA.

| Туре            | Pin | Function                      |              |
|-----------------|-----|-------------------------------|--------------|
| Control Command | Н   | RF Enable                     | (see Note 1) |
|                 | R   | System Common                 | (see Note 1) |
| Status Command  | D   | Summary Fault (Open on Fault) | (see Note 2) |
|                 | С   | Thermistor Output             | (see Note 3) |
|                 | Е   | Future                        |              |
|                 | G   | Status Common                 |              |

#### Notes:

- RF Enable (Pin H connected to Pin R) required to turn the RF Output ON. Disconnecting the RF Enable pin from the system control pin will cause the C-Band SSPA to reset. If default parameters must be reloaded, they will not affect the normal gain of the unit.
- 2. The Summary Fault contact will be in a NO FAULT condition (Pin D connected to Pin G), until a C-Band SSPA fault is detected. This is regardless of the RF Enable input state. When an internal summary fault is detected, the C-Band SSPA will automatically mute its output. When a summary fault condition clears the summary fault output, the RF Output will return to the NO FAULT condition after a RESET (AC power ON/OFF cycle).
- 3. A thermistor is mounted in order to accurately reflect the temperature of the C-Band SSPA's RF components. One lead is connected to Status Common (Pin G) and the other lead is connected to Thermistor Output (Pin C).

#### 2.1.2.4 RF Output Monitor Port (J4)

This RF interface is used for independent monitoring of the C-Band SSPA's output power levels through the use of an external power meter.

### 2.1.2.5 Prime Power (J5)

The power supply portion of the C-Band SSPA supplies all the internal voltage necessary to operate the RF section and the Alarm/Interface board. The power supply is configured for 90 to 265 VAC.

| Pin | Function | Wire Color   |
|-----|----------|--------------|
| Α   | Line     | Brown        |
| В   | Ground   | Green/Yellow |
| С   | Neutral  | Blue         |

#### 2.1.2.6 RF Output (J7)

Waveguide connection CPR-137R (grooved) is located on the side of the C-Band SSPA.

### 2.1.2.7 Alarm/Interface Board

The Alarm/Interface board provides:

- Status indicator by Form-C relay contacts:
  - ♦ Fault
  - Alarm
  - High reflected power (HRP)
  - RF mute
  - Output power level monitoring
- Mute mode which may be asserted by a remote current mode MUTE signal. A current rating of 20 mA may be a MUTE or ENABLE signal.
- Reset the HRP latch by remote current mode RESET signal. A current rating of 20 mA may reset the HRP latch if this condition occurred.
- The alarm/interface board is connected to the microwave power amplifier and to the customer's interface.

The Alarm/Interface board receives the analog signal from the reflected power sensor. The power amplifier will be muted when the input voltage is above the threshold level (with 1 second delay). When this event has occurred, HRP relay is de-energized and its Normal Close contact will become OPEN. It will indicate the fault condition on the customer interface.

Power up returns the system to the active condition if the amplifier is in the normal condition. The threshold level is set for VSWR of 2:1 maximum.



Prolonged operation without a load at the output may cause severe bodily harm. Do not operate the unit if the RF output is not connected to a load.

# Chapter 3. Single Thread Configuration

This chapter provides installation information for single thread configuration (Figure 3-1) system, including:

- Unpacking and inspecting the parts
- Installing the RFT
- Installing the C-Band SSPA
- Installing the LNA
- External connections



#### High Voltage Hazards:

The HPCST-5000 utilizes high voltage that can be lethal if contacted. The terminal system components should not be operated without a cover unless the user is thoroughly familiar with its operation and experienced with high voltage.

RF Radiation Hazards:

Prior to operation of terminal system, ensure that all microwave connections are securely fastened. Check that there is no microwave leakage. Never operate the HPCST-5000 with an open waveguide. This amplifier is capable of generating high power microwave radiation, which can cause bodily harm.

Safety Summary:

Equipment of this nature has inherent hazards. Operator or service technicians should have training on the high-power satellite terminal systems. When the HPCST-5000 cover is removed, high voltage may be exposed. Use extreme care when operating the amplifier with its cover removed. Extreme physical injury may result if these warnings are not observed.

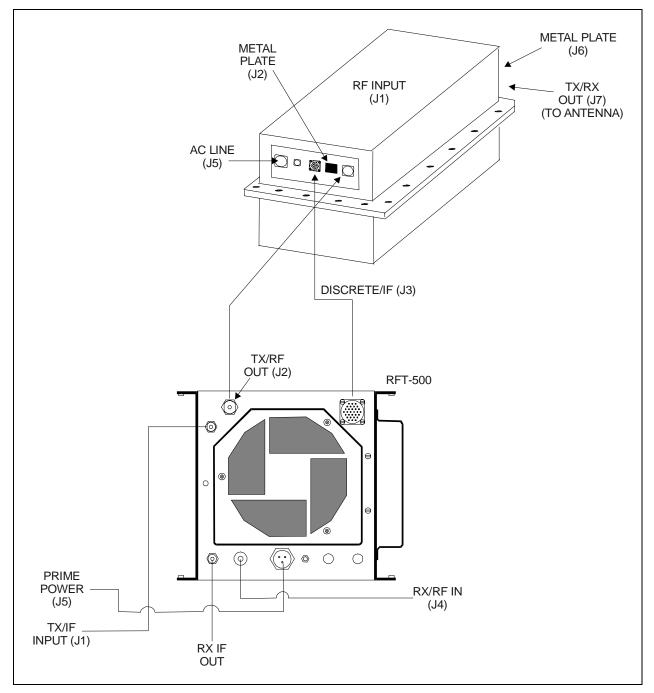



Figure 3-1. HPCST-5000 Single Thread Configuration Schematic

#### 3.1 Unpacking

The HPCST-5000 terminal system is packaged in multiple, preformed, reusable foam inside a cardboard carton.

Before unpacking the carton components, ensure that there is plenty of room around the carton for workspace. A large work table is recommended.

To remove the parts:

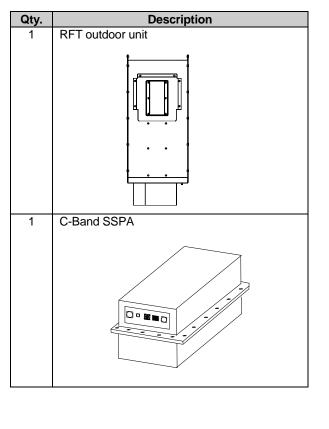
- 1. Cut the tape at the top of the carton where it is indicated OPEN THIS END.
- 2. Lift out the cardboard/foam spacer covering the unit.
- 3. Remove each part from the carton.

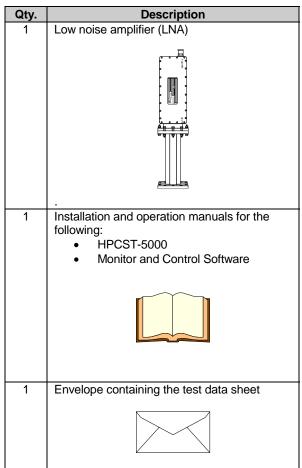


Because the RFT and C-Band SSPA are heavy, assistance may be necessary to remove the unit from the box.

Note: Save the packing material for reshipment.

#### 3.2 Inspecting the Equipment

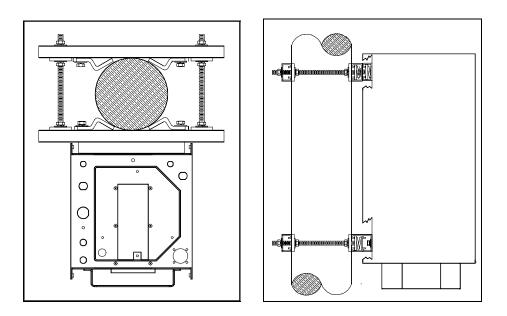

- 1. Carefully check the equipment for possible damage incurred during shipment.
- 2. Carefully check the equipment against the packing list shipped with the equipment to ensure that the shipment is complete.


#### 3.2.1 Included Parts

A typical HPCST-5000 single thread configuration contains the following components.

#### Notes:

- 1. Hardware required for this configuration is located in Chapter 8, Equipment List.
- 2. Because each system can be custom ordered, it is beyond the scope of this manual to provide the unlimited configuration possibilities.
- 3. This chapter does not describe the installation procedures for amplifiers, or high performance LNAs.






#### 3.3 **RFT Installation**

At the customer's discretion, the RFT can be installed anywhere on or near the antenna. The supplied hardware allows the installer a wide range of installation alternatives, including:

Vertical pole (e.g., mast) (either square or round). This is the most typical • installation.





Ensure that all air inlets, exhausts, and fan guards are free of dirt, dust, and debris. Make certain that these areas are inspected on a **CAUTION** regular basis. Damage to the equipment can be the result.

- Within the hub of a large antenna.
- Spar (i.e., square bar) on the antenna structure.

Note: EFData recommends that the RFT be mounted vertically, with the air inlet facing the ground.

# 3.3.1 Tools Required

| Qty. | Description                                                                               |
|------|-------------------------------------------------------------------------------------------|
| 1    | 3/8" drive ratchet                                                                        |
| 1    | 3" x 3/8" drive extension                                                                 |
| 1    | 1/4" x 3/8" drive socket (Metric equivalent: 7mm, 6 pt)                                   |
| 1    | 5/16" x 3/8" drive socket (Metric equivalent: 9mm, 6 pt)                                  |
| 1    | 3/8" x 3/8" drive socket (Metric equivalent: 10mm, 6 pt)                                  |
| 1    | 3/8" combination wrench (Metric equivalent: 10mm combination wrench with a 6 pt. box end) |

#### 3.3.2 Vertical Pole Installation

Refer to Section 8, Equipment List, Figure 8-4 for assistance in the installation of the RFT using Mounting Kit P/N KT/3576. Refer to Figure 8-2, Cabling Configuration, for cables necessary to connect the single thread configuration.

#### 3.3.2.1 Round Pole

Note: The following process is for a typical installation.

Install the RFT to a round vertical pole as follows:

- 1. Set the unit on its side, with the mounting holes facing up.
- 2. Install the 8" unistruts as follows:
  - a. Position an 8" unistrut (with the open side facing up) over one set of the mounting holes on the RFT.
  - b. Using four 1/4-20 x 5/8" bolts, 1/4" split lockwashers, and 1/4" flat washers, attach an 8" unistrut to the RFT.



- c. Tighten the bolts firmly.
- d. Repeat Steps 2.a. and 2.b. for the second 8" unistrut.

- 3. Install the 14" unistruts as follows:
  - a. Position a spring nut between the inner and outer bolts on both sides of each 8" unistrut.
  - b. Install each spring nut as follows:
    - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
    - (2) Press down on the spring nut to compress the spring, and rotate the nut 90° (i.e., perpendicular to the unistrut).





- (3) Release pressure on the spring nut.
- (4) Repeat Steps 3.b.(1) through 3.b.(3) for each spring nut.

c. Position a 14" unistrut (open side facing up) over one of the 8" unistruts.

**Note:** Ensure the 14" unistrut is centered over the RFT.

d. Using two 5/16-18 x 1-1/4" bolts, 5/16" split lockwashers, and 5/16" flat washers, attach the 14" unistrut to the 8" unistrut.



**Note:** The bolts should be installed in the fifth hole from each end, as illustrated.

- e. Tighten the bolts firmly.
- f. Attach the second 14" unistrut to the second 8" unistrut by repeating Steps 3.a. through 3.d.

- 4. Install the pipe blocks as follows:
  - a. Install two spring nuts in each of four 14" unistruts (the two just mounted on the RFT, and two additional).

**Note:** Ensure the spring nuts in the unistruts are wide enough apart so that when the pipe blocks are installed, they will clear the pole when the unit is lifted into place for installation.

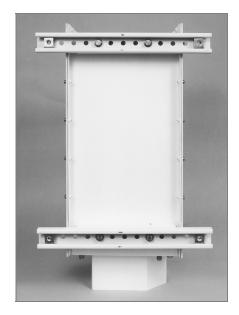
- b. Install each spring nut as follows:
  - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.



- (2) Press down on the spring nut to compress the spring, and rotate the nut  $90^{\circ}$  (i.e., perpendicular to the unistrut).
- (3) Release pressure on the spring nut.
- (4) Repeat Steps 4.b.(1) through 4.b.(3) for each spring nut.
- c. Using four 5/16-18 x 1" bolts, 5/16" split lockwashers, and 5/16" flat washers, loosely secure the pipe blocks to the spring nuts.

**Note:** Ensure the pipe blocks are installed with the long angle facing inward, toward the pipe.






DO NOT tighten the pipe block bolts until after mounting the RFT on the vertical pole. (See Step 6.e.)

- 5. Install the threaded rods as follows:
  - a. Install two spring nuts in both 14" unistruts mounted on the RFT.

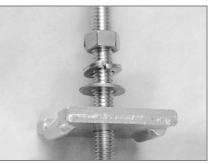
**Note:** Ensure the spring nuts are positioned over the outer holes in the 14" unistruts.

- b. To install each spring nut:
  - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
  - (2) Press down on the spring nut to compress the spring, and rotate the nut  $90^{\circ}$  (i.e., perpendicular to the unistrut).





- (3) Release pressure on the spring nut.
- (4) Repeat Steps 5.b.(1) through 5.b.(3) for each spring nut.
- c. Thread a 5/16-20 nut approximately 1-1/2" onto each threaded rod. (This will ensure that the threaded rods will extend beyond the spring nuts when installed.)
- d. Place a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate over each threaded rod.




e. One threaded rod at a time, hold the washers and plate in place on the rod, and screw the rod into a spring nut, as illustrated.

#### Notes:

- 1. Be sure to position the flanges of the flat fitting plates in the grooves of the unistruts.
- 2. Before tightening the nuts on the threaded rods, ensure that the end of each rod is screwed in until it is flush with the backside of the unistruts. This ensures the rods are threaded completely through the spring nuts.
- f. Thread a 5/16-18 nut about 2" onto the end of each threaded rod. Tighten each nut firmly.
- g. Slip a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate (in that order) onto each threaded rod.





- 6. Mount the RFT as follows:
  - a. Lift the RFT into position on the vertical pole.
  - b. Slip a 14" unistrut over each of pair of threaded rods (upper and lower).

**Note:** Install the 14" unistruts with the open face toward the pole as illustrated below.

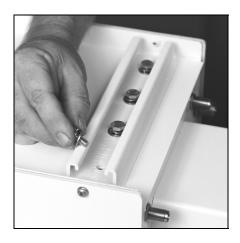
- c. Install a 5/16" flat washer, 5/16" split lockwasher, and 5/16-18 nut on each threaded rod.
- d. Position the RFT as desired, and tighten the 5/16-18 nuts installed in Step 6.c.
- e. Slide the pipe blocks inward until they contact the vertical pole, then firmly tighten the 5/16-18 bolts.





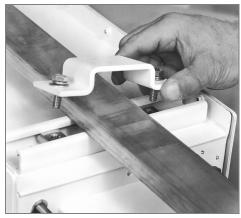
#### 3.3.2.2 Square Pole

For square vertical pole installation, follow the steps in Section 2.3.2.1, with the following exceptions:


- Do not perform Step 4.
- Do not perform Step 6.e.

#### 3.3.3 Spar Installation

Note: Refer to Section 8, Equipment List, Figure 8-3 for assistance in the installation.


Install the RFT to a spar as follows:

- 1. Set the unit on its side, with the mounting holes facing up.
- 2. Install the 8" unistruts as follows:
  - a. Position an 8" unistrut (with the open side facing up) over one set of the mounting holes on the RFT.
  - b. Using four 1/4-20 x 1" bolts, 1/4" split lockwashers, and 1/4" flat washers, attach an 8" unistrut to the RFT. Tighten the bolts firmly.
  - c. Repeat Steps 2.a. and 2.b. for the second 8" unistrut.



- 3. Mount the RFT as follows:
  - a. Position a spring nut between the inner and outer bolts on both sides of each 8" unistrut.
  - b. Install each spring nut as follows:
    - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
    - (2) Press down on the spring nut to compress the spring, and rotate the nut 90° (i.e., perpendicular to the unistrut).
    - (3) Release pressure on the spring nut.
    - (4) Repeat Steps 3.b.(1) through 3.b.(3) for each spring nut.
  - c. Lift the RFT into position.
  - d. Using four 5/16-18 bolts, 5/16" split lockwashers, and 5/16" flat washers, bolt the two spar support brackets in place. Tighten the bolts firmly.







#### 3.4 LNA Installation

**Note:** Refer to Section 8, Figure 8-1, for assistance in the installation of the LNA using the LNA Connector Kit P/N KT/2721.

To install a single LNA (Figure 3-2) to an antenna:

- 1. Remove the protective cover from the antenna mount location (if installed).
- 2. Remove the plastic cover from the antenna end (RF IN) of the LNA.
- 3. Remove the plastic cover from the RF OUT end of the LNA.



After removing the protective cover(s), ensure that no foreign material or moisture enters the antenna waveguide or LNA.

- 4. Install the appropriate gasket on the antenna end of the LNA:
  - a. If the LNA has a groove, and the antenna flange does not, the thin gasket should be used.
  - b. If both the LNA and the antenna flange have grooves, the thick gasket should be used.

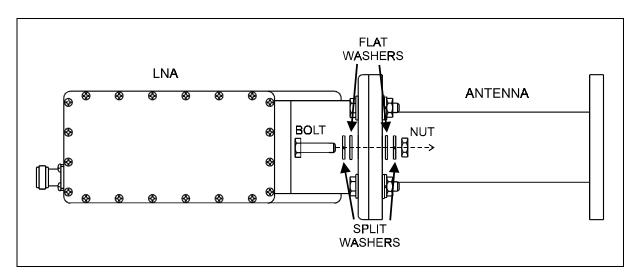



Figure 3-2. Installation of the LNA

5. Position the LNA in place on the antenna, and install the  $1/4-20 \times 1$ " bolts, washers, and nuts as shown in Figure 3-3. Do not tighten at this time.



Install the hardware exactly as shown. Failure to do so may cause damage to the LNA and/or waveguide.

6. After all the bolts, washers, and nuts have been installed, tighten them according to the following illustrated sequence.

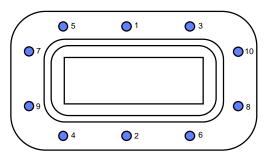
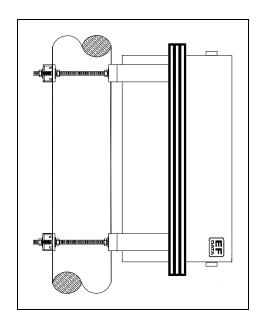



Figure 3-3. Procedures for Tightening the Waveguide Bolts


#### 3.5 C-Band SSPA Installation

Refer to Section 8, Equipment List, Figure 8-4, for assistance in the installation of the C-Band SSPA using the Universal Mounting Kit P/N KT/6699. Refer to Figure 8-2 Cabling Configuration for cables necessary to connect the single thread configuration.

#### 3.5.1 C-Band SSPA Installation

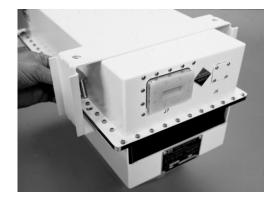
At the customer's discretion, the C-Band SSPA can be installed anywhere on or near the antenna. The supplied hardware allows the installer a wide range of installation alternatives, including:

• Vertical pole (e.g., mast) (either square or round). This is the most typical installation.

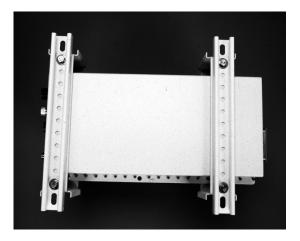


- Within the hub of a large antenna.
- Spar (i.e., square bar) on the antenna structure.

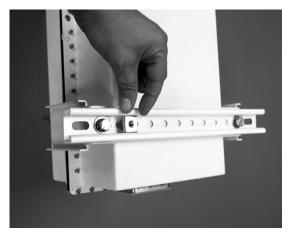
**Note:** EFData recommends that the C-Band SSPA be mounted either vertically, as shown, or with the fan assembly facing the ground.


## 3.5.2 Vertical Pole Installation

#### 3.5.2.1 Round Pole


Note: The following process is for a typical installation.

Install the C-Band SSPA to a round vertical pole as follows:


- 1. Install mounting bracket as follows:
  - a. Position two mounting brackets onto the C-Band SSPA.
  - b. Secure the mounting brackets to the unit with four 3/8 x 1 1/4" bolts, 3/8" split lockwashers, 3/8 flat washers, and 3/8 hex nuts.



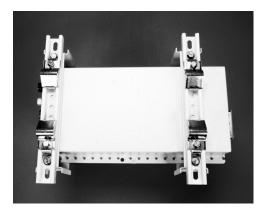
- 2. Install the 14" unistruts as follows:
  - a. Position an 14" unistrut (with the open side facing up) over the mounting holes of the mounting bracket.
  - b. Using four 3/8 x 1" bolts, 3/8" split lockwashers, and 3/8" flat washers, attach an 8" unistrut to the C-Band SSPA mount bracket. Tighten the bolts firmly.
  - c. Repeat Steps 3.a. and 2.b. for the second 14" unistrut.



- 3. Install the spring nuts as follows:
  - a. Position a spring nut between the inner and outer bolts on both sides of each 14" unistrut.
  - b. Install each spring nut as follows:
    - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
    - (2) Press down on the spring nut to compress the spring, and rotate the nut 90° (i.e., perpendicular to the unistrut.






- (3) Release pressure on the spring nut.
- (4) Repeat Steps 4.b.(1) through 4.b.(3) for each spring nut.

4. Install the pipe blocks as follows:

**Note:** Be sure to position the spring nuts in the unistruts wide enough apart so that when the pipe blocks are installed they will clear the pole when the unit is lifted into place for installation.

a. Using four 5/16-18 x 1" bolts, 5/16" split lockwashers, and 5/16" flat washers, loosely secure the pipe blocks to the spring nuts.

**Note:** Ensure the pipe blocks are installed with the long angle facing inward, toward the pipe, as illustrated.





DO NOT tighten the pipe block bolts until after mounting the C-Band SSPA on the vertical pole. (See Step 6.e.)

- 5. Install the threaded rods as follows:
  - a. Install two spring nuts in both 14" unistruts mounted on the C-Band SSPA.

**Note:** Ensure the spring nuts are positioned over the outer holes in the 14" unistruts, as illustrated.

- b. To install each spring nut:
  - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
  - (2) Press down on the spring nut to compress the spring, and rotate the nut 90° (i.e., perpendicular to the unistrut).





- (3) Release pressure on the spring nut.
- (4) Repeat Steps 5.b.(1) through 5.b.(3) for each spring nut.
- c. Thread a 5/16-20 nut approximately 1-1/2" onto each threaded rod. (This will ensure that the threaded rods will extend beyond the unistrut when installed.)
- d. Place a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate over each threaded rod.



e. One threaded rod at a time, hold the washers and plate in place on the rod, and screw the rod into a spring nut, as illustrated.



- 1. Be sure to position the flanges of the flat fitting plates in the grooves of the unistruts.
- 2. Before tightening the nuts on the threaded rods, ensure that the end of each rod is screwed in until it is flush with the backside of the unistruts. This ensures the rods are threaded completely through the spring nuts.
- f. Tighten each nut firmly.
- g. Thread a 5/16-18 nut about 2" onto the end of each threaded rod.
- h. Slip a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate (in that order) onto each threaded rod.

- 6. Mount the C-Band SSPA as follows:
  - a. Lift the C-Band SSPA into position on the vertical pole.
  - b. Slip a 14" unistrut over each of pair of threaded rods (upper and lower).

**Note:** Install the 14" unistruts with the open face toward the pole as illustrated below.

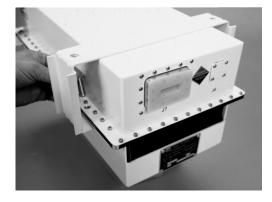
- c. Install a 5/16" flat washer, 5/16" split lockwasher, and 5/16-18 nut on each threaded rod.
- d. Position the RFT as desired, and tighten the 5/16-18 nuts installed in Step 6.c.
- e. Slide the pipe blocks inward until they contact the vertical pole, then firmly tighten the 5/16-18 bolts.



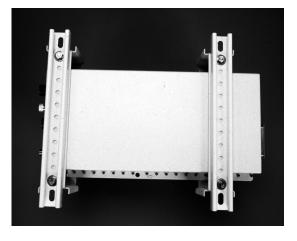


## 3.5.2.2 Square Pole

For square vertical pole installation, follow the steps in Section 2.3.2.1, with the following exceptions:


- Do not perform Step 4.
- Do not perform Step 6.e.

## 3.5.3 Spar Installation


Note: Refer to Section 8, Equipment List, Figure 8-3 for assistance in the installation.

Install the C-Band SSPA to a spar as follows:

- 1. Install mounting bracket as follows:
  - a. Position two mounting brackets onto the C-Band SSPA.
  - b. Secure the mounting brackets to the unit with four 3/8 x 1 1/4" bolts, 3/8" split lockwashers, 3/8 flat washers, and 3/8 hex nuts.



- 2. Install the 14" unistruts as follows:
  - a. Position an 14" unistrut (with the open side facing up) over the mounting holes of the mounting bracket.
  - b. Using four 3/8 x 1" bolts, 3/8" split lockwashers, and 3/8" flat washers, attach an 8" unistrut to the C-Band SSPA mount bracket. Tighten the bolts firmly.
  - c. Repeat Steps 3.a. and 2.b. for the second 14" unistrut.



- 3. Mount the C-Band SSPA as follows:
  - a. Position a spring nut between the inner and outer bolts on both sides of each 14" unistrut, as illustrated.
  - b. Install each spring nut as follows:
    - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
    - (2) Press down on the spring nut to compress the spring, and rotate the nut 90° (i.e., perpendicular to the unistrut).
    - (3) Release pressure on the spring nut.
    - (4) Repeat Steps 3.b.(1) through 3.b.(3) for each spring nut.
  - c. Lift the C-Band SSPA into position.
  - d. Using four 5/16-18 bolts, 5/16" split lockwashers, and 5/16" flat washers, bolt the two spar support brackets in place.
  - e. Tighten the bolts firmly.





This page is intentionally left blank.

# Chapter 4. REDUNDANT SYSTEM INSTALLATION

This chapter provides installation information for redundant system (Figure 4-1) including:

- Unpacking and inspecting the parts
- Installing redundant RFTs
- Installing redundant C-Band SSPAs
- Installing the 1:1 redundant plate
- External connections

Note: Refer to Section 4.4 for the redundancy configuration cabling matrix.

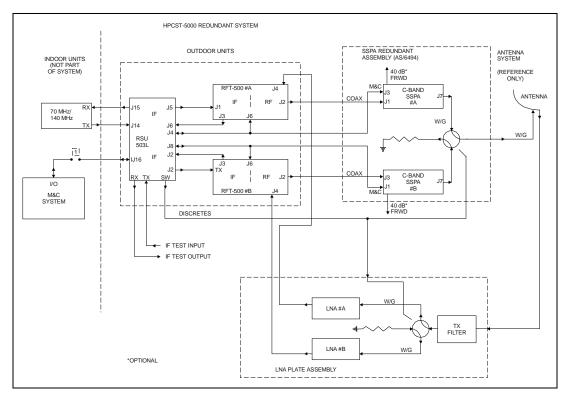



Figure 4-1. HPCST-5000 Redundant System Schematic Using SSPAs

#### 4.1 Unpacking

Note: The HPCST-5000 terminal system is shipped in multiple cartons.

Remove the parts as follows:

- 1. Cut the tape at the top of each carton where it is indicated OPEN THIS END.
- 2. Lift out the cardboard/foam spacer covering the units.



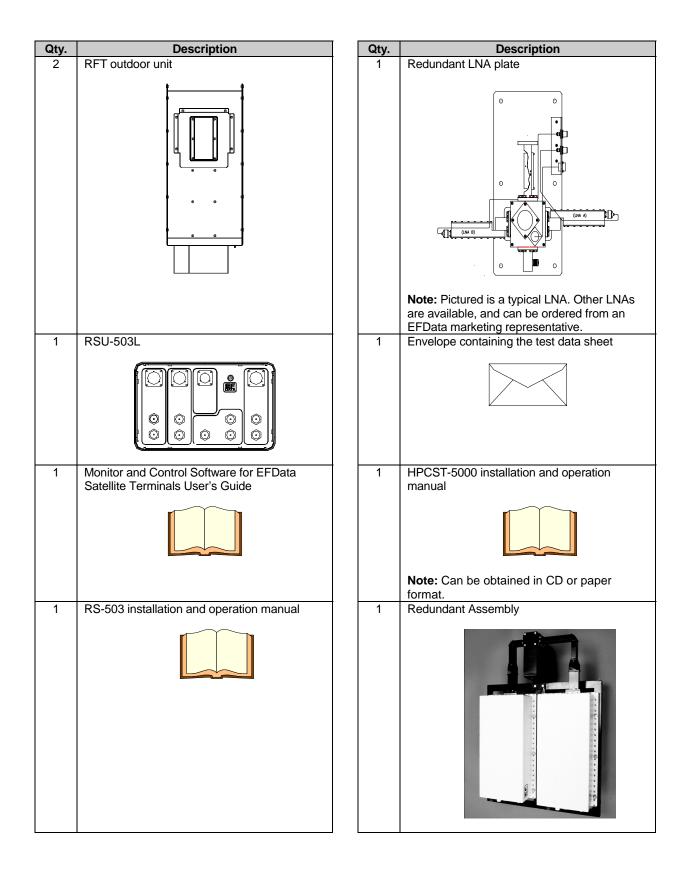
2.

1. The redundant assembly may be too heavy to be removed by one individual, assistance may be required.

Do not lift the redundant SSPA assembly by the waveguide. Lift assembly by the mounting frame only. Extreme care shall be given to the waveguide assembly during removal. Damage to the redundant assembly may be the result.

- 3. Remove the parts from the cartons. Refer to Section 4.2.1 for a parts breakdown.
- 4. If required, remove the screws from the lid of the wooden crate, and remove the lid.
- 5. Unbolt and remove the redundant LNA plate from the crate.
- 6. Remove the remainder of the parts from the crate. Refer to Section 4.2.1 for a parts breakdown.

Note: Save the packing material for reshipment, if required.


#### 4.2 Inspecting the Equipment

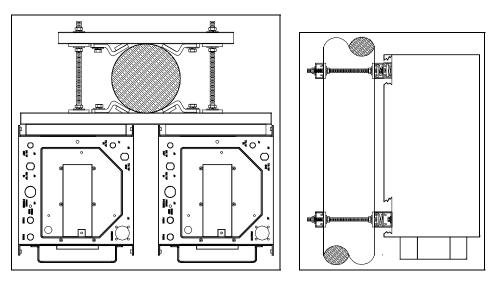
- 1. Carefully check the equipment for possible damage incurred during shipment.
- 2. Carefully check the equipment against the packing list shipped with the equipment to ensure that the shipment is complete.

#### 4.2.1 Included Parts

A typical redundant HPCST-5000 configuration contains the following components.

- 1. Hardware required to perform this task is located in Chapter 8, Equipment List.
- 2. Because each system can be custom ordered, it is beyond the scope of this manual to provide the unlimited configuration possibilities.
- 3. This chapter does not describe the installation procedures for amplifiers, high performance LNAs, phase-locked LNBs, LNBs, and phase-locked block converters.




#### 4.3 RFT Installation



Ensure that all air inlets, exhausts, and fan guards are free of dirt, dust, and debris. Make certain that these areas are inspected on a regular basis. Damage to the equipment can be the result.

**Note:** At the customer's discretion, the RFTs can be installed anywhere on or near the antenna. The supplied hardware allows the customer a wide range of installation alternatives, including:

• Vertical pole (e.g., mast) (either square or round). This is the most typical installation.



Note: This view is looking up at the RFT redundant assembly.

- Within the hub of a large antenna.
- Spar (i.e., rectangular bar) on the antenna structure.

**Note:** EFData recommends that the RFTs be mounted vertically, with the air inlets facing the ground.

## 4.3.1 Tools Required

| Qty. | Description                                                                               |
|------|-------------------------------------------------------------------------------------------|
| 1    | 3" x 3/8" drive extension                                                                 |
| 1    | 1/4" x 3/8" drive socket ( <i>Metric equivalent: 7mm, 6 pt</i> )                          |
| 1    | 5/16" x 3/8" drive socket (Metric equivalent: 9mm, 6 pt)                                  |
| 1    | 3/8" x 3/8" drive socket (Metric equivalent: 10mm, 6 pt)                                  |
| 1    | 3/8" combination wrench (Metric equivalent: 10mm combination wrench with a 6 pt. box end) |

#### 4.3.2 Vertical Pole Installation

Refer to Section 8, Equipment List, Figure 8-5, for assistance in the installation of the RFT. Refer to Figure 8-2 for the cabling configuration.

#### 4.3.2.1 Round Pole

Note: The following process is a typical installation.

Install the RFTs to a round vertical pole as follows:

- 1. Set the units on their sides, with the mounting holes facing up.
- 2. Install the 8" unistruts as follows:
  - a. Position an 8" unistrut (with the open side facing up) over one set of the mounting holes on the RFT.
  - b. Using four 1/4-20 x 1" bolts, 1/4" split lockwashers, and 1/4" flat washers, attach an 8" unistrut to the RFT.

Note: Tighten the bolts firmly.

c. Repeat Steps 2.a. and 2.b. for each of the remaining 8" unistruts (four required).

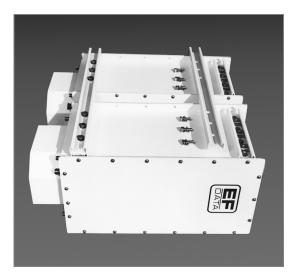


3. Install the 20" unistruts as follows:

**Note:** The placement of the pipe blocks may interfere with the inner or center unistrut attaching bolts. Be sure to determine the pipe block placement locations before bolting the 20" unistruts in place. It may be necessary to eliminate the center or inner 20" unistrut mounting spring nuts and bolts.

- a. Insert a spring nut between the unistrut mounting bolts on both RFTs.
- b. To install each spring nut:
  - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
  - (2) Press down on the spring nut to compress the spring, and rotate the nut 90° (i.e., perpendicular to the unistrut).



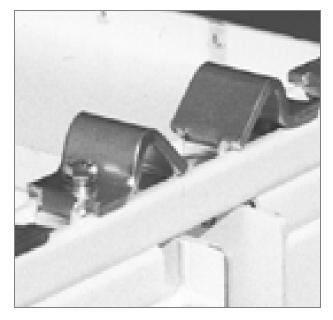



- (3) Release pressure on the spring nut.
- (4) Repeat Steps 3.b.(1) through 3.b.(3) for each spring nut.

c. With the RFTs side-by-side, position a 20" unistrut (open side facing up) in place over one pair of 8" unistruts.

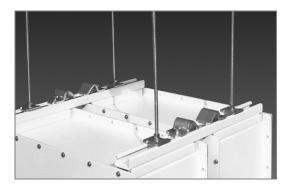
**Note:** Ensure the long unistrut is centered over the RFT.

d. Using two or three 5/16-18 x 1-1/4" bolts, 5/16" split lockwashers, and 5/16" flat washers, attach the 20" unistrut to the 8" unistruts.




- e. Tighten bolts firmly.
- f. Attach the second 20" unistrut to the second set of 8" unistruts by repeating Steps 3.a. through 3.d.

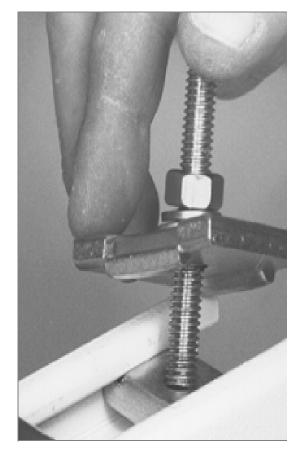
- 4. Install the pipe blocks as follows:
  - a. Install two spring nuts in each of the two 20" long unistruts and two 14" long unistruts (centered in the unistruts, and wide enough apart so the pipe blocks will clear the pole when the unit is installed).
  - b. Install each spring nut as follows:




- (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
- (2) Press down on the spring nut to compress the spring, and rotate the nut  $90^{\circ}$  (i.e., perpendicular to the unistrut).
- (3) Release pressure on the spring nut.
- (4) Repeat Steps 4.b.(1) through 4.b.(3) for each spring nut.
- c. Using eight 5/16-18 x 1" bolts, 5/16" split lockwashers, and 5/16" flat washers, loosely secure the pipe blocks to the spring nuts.



- 1. Ensure the pipe blocks are installed with the long angle face inward, toward the pipe, as illustrated.
- 2. DO NOT tighten the pipe block bolts until after mounting the RFTs on the vertical pole. (See Step 6.e.)


- 5. Install the threaded rods as follows:
  - a. Install two spring nuts in both 20" unistruts mounted on the RFT.
  - b. Install each spring nut as follows:
    - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
    - (2) Press down on the spring nut to compress the spring, and rotate the nut 90° (i.e., perpendicular to the unistrut).

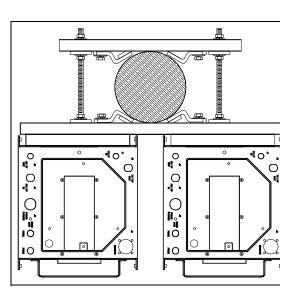




- (3) Release pressure on the spring nut.
- (4) Repeat Steps 5.b.(1) through 5.b.(3) for each spring nut.
- c. Thread a 5/16-20 nut approximately 1-1/2" onto each threaded rod. (This will ensure that the threaded rods will extend beyond the spring nuts when installed.)
- d. Place a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate over each threaded rod.

e. One threaded rod at a time, hold the washers and plate in place on the threaded rod and screw it into a spring nut.




- 1. Be sure to position the flanges of the flat fitting plates in the grooves of the unistruts.
- 2. Before tightening the nuts on the threaded rods, ensure that the end of each rod is screwed in until it contacts the unistrut. This ensures the rods are threaded completely through the spring nuts
- f. Tighten each nut firmly.
- g. Thread a 5/16-18 nut about 2" onto the end of each threaded rod.
- h. Slip a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate (in that order) onto each threaded rod.



- 6. Mount the RFTs as follows:
  - a. Lift the RFT into position on the vertical pole.
  - b. Slip a 14" unistrut over each of pair of threaded rods (upper and lower).

**Note:** Install the 14" unistruts with the open face toward the pole, as illustrated.

- c. Install a 5/16" flat washer, 5/16" split lockwasher, and 5/16-18 nut on each threaded rod.
- d. Position the RFT, as desired, and tighten the 5/16-18 nuts installed in Step 6.c.
- e. Slide the pipe blocks in until they contact the vertical pole.
- f. Then, firmly tighten the nuts.





## 4.3.2.2 Square Pole

For square, vertical pole installation, follow the steps in Section 3.3.2.1, with the following exceptions:

- Do not perform Step 4.
- Do not perform Step 6.e.

## 4.3.3 Spar Installation

Note: EFData does not recommend the unit be spar mounted.

Install the RFTs to a spar as follows:

- 1. Set the units on their sides, with the mounting holes facing up.
- 2. Install the 8" unistruts as follows:
  - a. Position an 8" unistrut (with the open side facing up) over one set of the mounting holes on the RFT.
  - b. Using four 1/4-20 x 1" bolts, 1/4" split lockwashers, and 1/4" flat washers, attach an 8" unistrut to the RFT.

Note: Tighten the bolts firmly.

c. Repeat Steps 2.a. and 2.b. for the remaining 8" unistruts (for a total of four).



- 3. Install the 20" unistruts as follows:
  - a. Position a spring nut between the 1/4-20 bolts in each 8" unistrut.



- b. Install each spring nut as follows:
  - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
  - (2) Press down on the spring nut to compress the spring, and rotate the nut  $90^{\circ}$ .
  - (3) Release pressure on the spring nut.
- c. With the RFTs side by side, position a 20" unistrut in place over one pair of 8" unistruts (open side up).
- d. Using four 5/16-18 bolts, 5/16" split lockwashers, and 5/16" flat washers, bolt the 20" unistrut to the 8" unistruts.
- e. Tighten the bolts firmly.
- f. Repeat Steps 3.c. through 3.e. for the second 20" unistrut.



- 4. Mount the RFT as follows:
  - a. Lift the RFT into position.
  - b. Using four 5/16-18 bolts, 5/16" split lockwashers, and 5/16" flat washers, bolt the two spar support brackets in place. Tighten the bolts firmly.



## 4.3.4 1:1 Redundant Plate Installation

Note: Refer to Section 8, Figure 8-2 for cabling configuration.

The 1:1 redundant plate is shown in Figure 4-2 as follows:

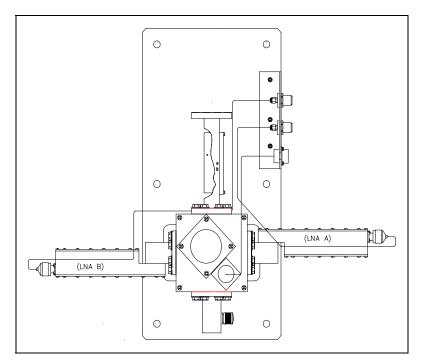



Figure 4-2. 1:1 Redundant Plate

Install the 1:1 redundant plate as follows:

1. Mount the 1:1 redundant plate to the antenna.

**Note:** The type of mounting is determined by the brand of antenna on which the equipment will be installed.

2. Remove the plastic cover from the RF IN connector of the redundant plate.



After removing the protective cover, ensure that no foreign material or moisture enters the 1:1 redundant plate's waveguide.

- 3. Install the appropriate gasket on the RF IN connector of the redundant plate:
  - a. If the TR Filter-Plate/waveguide has a groove, and the antenna flange does not, the thin gasket should be used.
  - b. If both the TR Filter-Plate/waveguide and the antenna flange have grooves, the thick gasket should be used.
- 4. Position the antenna waveguide in place on the RF IN connector, and install the 1/4-20 x 1" bolts, 1/4" split lockwashers, 1/4" flat washers, and 1/4-20 nuts as shown in Figure 4-3.

Note: Do not tighten the bolts at this time.

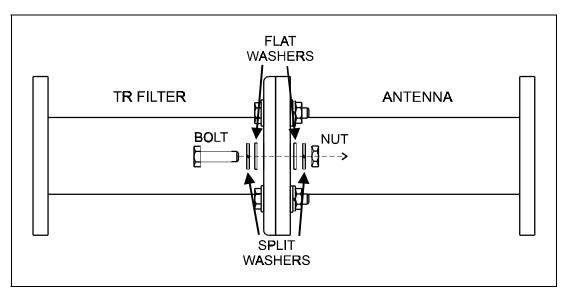



Figure 4-3. Installation of LNA to Waveguide

- 5. After all the bolts, washers, and nuts have been installed, tighten bolts according to Figure 4-4.
- 6. Remove the plastic covers from all the connectors, and attach the appropriate cables.

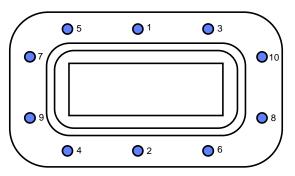
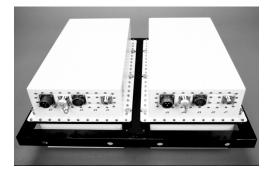



Figure 4-4. Procedures for Tightening LNA to Waveguide Bolts

#### 4.3.5 1:1 Redundant C-Band SSPA Installation


Refer to Section 8, Equipment List, Figure 8-6 for assistance in the installation of the 1:1 Redundant System. Refer to Figure 8-2 for the cabling configuration.

#### 4.3.5.1 Round Pole

Note: The following process is for a typical installation.

Install the 1:1 redundant assembly C-Band SSPAs to a round vertical pole as follows:

- 1. Set the units on a suitable work bench with the cooling fan side up.
- 2. Install the mounting bracket as follows:
  - a. Position the mounting brackets. Align the mounting brackets with the mounting bolt holes.





Do not block the cooling fans with the mounting bracket. Damage to the unit may be the result

- b. Install four 3/8 x 11/4" bolts 3/8" split washers, and 3/8" flat washers.
- c. Tighten bolts firmly.

3. Install 20" unistrut as follows:

**Note:** The placement of the pipe blocks may interfere with the inner or center unistrut attaching bolts. Be sure to determine the pipe block placement locations before bolting the 20" unistrut in place. It may be necessary to eliminate the inner or center mounting spring nuts and bolts.

- a. Position an 20" unistrut (with the open side facing up) over one set of the mounting holes on the C-Band SSPAs.
- b. Using six 3/8-20 x 1" bolts, 3/8" split lockwashers, and 3/8" flat washers, attach the 20" unistrut to the mounting bracket.

Note: Tighten the bolts firmly.

- c. Repeat Steps 3.a. and 3.b. for each of the remaining 20" unistruts (two required).
- d. Insert a spring nut between the unistrut mounting bolts.





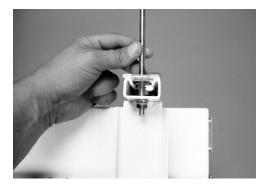
- e. To install each spring nut:
  - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.
  - (2) Press down on the spring nut to compress the spring, and rotate the nut  $90^{\circ}$  (i.e., perpendicular to the unistrut).
  - (3) Release pressure on the spring nut.
  - (4) Repeat Steps 3.b.(1) through 3.b.(3) for each spring nut.

4. Install the pipe blocks as follows:

**Note:** Be sure to position the spring nuts in the unistruts wide enough apart so that when the pipe blocks are installed they will clear the pole when the unit is lifted into place for installation.

 Using four 5/16-18 x 1" bolts, 5/16" split lockwashers, and 5/16" flat washers, loosely secure the pipe blocks to the spring nuts.

**Note:** Ensure the pipe blocks are installed with the long angle facing inward, toward the pipe, as illustrated.

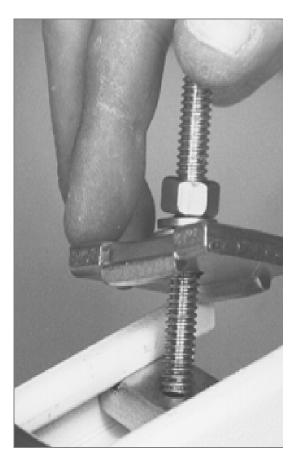


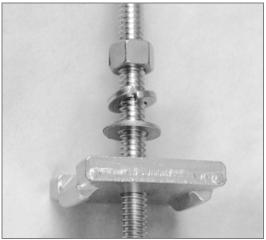



DO NOT tighten the pipe block bolts until after mounting the C-Band SSPA on the vertical pole. (See Step 6.e.)

- 1. Ensure the pipe blocks are installed with the long angle face inward, toward the pipe, as illustrated.
- 2. DO NOT tighten the pipe block bolts until after mounting the RFTs on the vertical pole. (See Step 6.e.)

- 5. Install the threaded rods as follows:
  - a. Install two spring nuts in both 20" unistruts mounted on the C-Band SSPAs.
  - b. Install each spring nut as follows:
    - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.

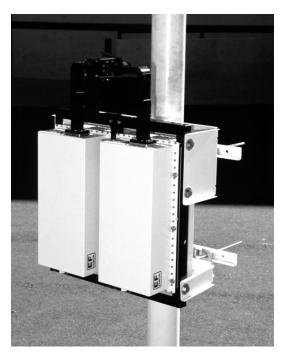



- (2) Press down on the spring nut to compress the spring, and rotate the nut  $90^{\circ}$  (i.e., perpendicular to the unistrut).
- (3) Release pressure on the spring nut.
- (4) Repeat Steps 5.b.(1) through 5.b.(3) for each spring nut.
- c. Thread a 5/16-20 nut approximately 1-1/2" onto each threaded rod. (This will ensure that the threaded rods will extend beyond the unistrut when installed.)
- d. Place a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate over each threaded rod.

- 1. Ensure the flanges of the flat fitting plates are in the grooves of the unistruts.
- 2. Before tightening the nuts on the threaded rods, ensure that the end of each rod is screwed in until it contacts the unistrut. This ensures the rods are threaded completely through the spring nuts.
- e. One threaded rod at a time, hold the washers and plate in place on the threaded rod and screw it into a spring nut, as illustrated.

- f. Thread a 5/16-18 nut about 2" onto the end of each threaded rod. Tighten each nut firmly.
- g. Slip a 5/16" split lockwasher, 5/16" flat washer, and flat fitting plate (in that order) onto each threaded rod.






- 6. Mount the C-Band SSPAs as follows:
  - a. Lift the configuration into position on the vertical pole.
  - b. Slip a 14" unistrut over each of pair of threaded rods (upper and lower).

**Note:** Install the 14" unistruts with the open face toward the pole, as illustrated.

- c. Install a 5/16" flat washer, 5/16" split lockwasher, and 5/16-18 nut on each threaded rod.
- d. Position the configuration, as desired, and tighten the 5/16-18 nuts installed in Step 6.c.
- e. Slide the pipe blocks in until they contact the vertical pole.
- f. Tighten the 5/16-18 bolts.





## 4.3.5.2 Square Pole

For square, vertical pole installation, follow the steps in Section 4.3.2.1, with the following exceptions:

- Do not perform Step 4.
- Do not perform Step 6.e.

### 4.3.6 Spar Installation

Note: EFData does not recommend the unit be spar mounted.

Install the C-Band SSPA to a spar as follows:

- 1. Set the C-Band SSPAs on their sides, with the mounting holes facing up.
- 2. Install the mounting bracket as follows:
  - a. Position the C-Band SSPA into the mounting bracket. Secure with four 3/8 x 1.25" bolts, 3/8 split lock washers, and 3/8 flat washers. Tighten bolts firmly.



- 3. Install the 20" unistruts as follows:
  - a. Position the 20" unistrut on the mounting bracket and secure with six 3/8 x 1.25 bolts, 3/8" split lock washers, and 3/8" flat washers.
  - b. Install each spring nut as follows:
    - (1) Place the spring nut in the unistrut channel, spring side down, with its wide side parallel with the unistrut channel.



(2) Press down on the spring nut to compress the spring, and rotate the nut 90°.

- 4. Release pressure on the spring nut. Mount the configuration as follows:
  - a. Lift the C-Band SSPA into position.
  - b. Using four 5/16-18 bolts, 5/16" split lockwashers, and 5/16" flat washers, bolt the two spar support brackets in place.
  - c. Tighten the bolts firmly.



### 4.4 Redundancy Configuration Cabling Matrix

Refer to Figure 4-5 to determine the proper length of cable assemblies needed to connect the redundant configuration.

**Note:** Refer to Chapter 8 for the part number corresponding to the length of cable required for the redundant configuration. Contact EFData Customer Support for obtaining the required cable assemblies.

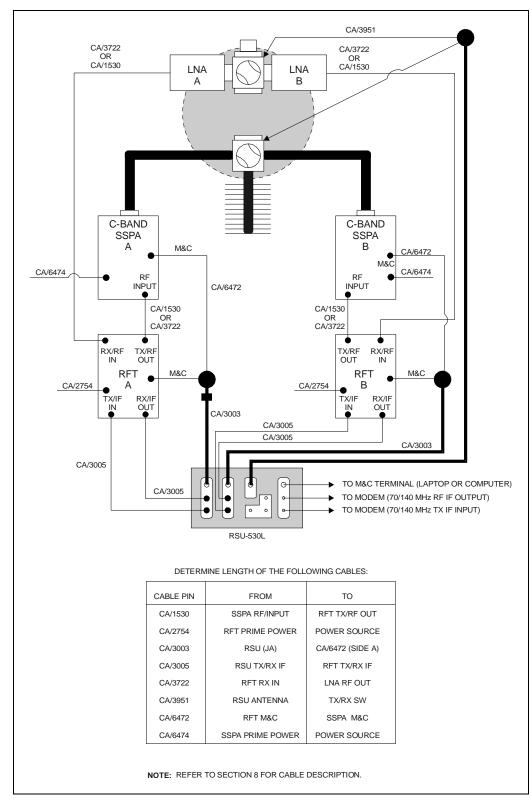



Figure 4-5. Redundant Configuration Cable Assembly Matrix

This page is intentionally left blank.



This chapter provides operation information for the HPCST-5000 terminal system.

### 5.1 System Operation

There are three methods of operating the RFT-500:

• Connect a PC running DOS to the EIA-232/EIA-485 remote control port, and run the M&C system monitor software. This software is DOS-based and provides an interface to the remote commands.

For information on the remote commands, refer to Appendix B.

For more information on the M&C system monitor program, refer to the *Monitor* and Control Software for EFData Satellite Terminals User's Guide.

- Connect the optional KP-10 hand-held keypad. For more information, refer to the *KP-10 External Keypad Installation and Operation Manual*.
- Use the optional front panel display/keypad (refer to Section 5.3).

### 5.2 Remote Control

Refer to Appendix B for information on remote control operation.

## 5.3 Front Panel Display/Keypad

The optional front panel (Figure 5-1) provides the local user interface, which can be used to configure and monitor the status of the terminal.



Figure 5-1. Optional RFT-500 Terminal Keypad

The front panel features a 16-character, 2-line LED display and a 6-key keypad. All functions are accessible at the front panel by entering one of three predefined "SELECT" categories or levels:

- Configuration (CONFIG)
- Monitor
- Faults

### 5.3.1 Front Panel Controls

The terminal is locally operated by using the front panel keypad. The keypad consists of six keys. Each key has its own logical function or functions.

| Key                                | Description                                                                              |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| [ENTER]                            | This key is used to select a displayed function or to execute a change to the terminal's |  |  |  |
|                                    | configuration.                                                                           |  |  |  |
| [CLEAR]                            | This key is used for backing out of a selection or to cancel a configuration change      |  |  |  |
|                                    | which has not been executed using [ENTER]. Pressing [CLEAR] generally returns the        |  |  |  |
|                                    | display to the previous selection.                                                       |  |  |  |
| $[\leftarrow]$ and $[\rightarrow]$ | These keys are used to move to the next selection, or to move the cursor for certain     |  |  |  |
|                                    | functions.                                                                               |  |  |  |
| [↑] and [↓]                        | These keys are used primarily to change configuration data (numbers), but are also       |  |  |  |
|                                    | used at times to move from one section to another.                                       |  |  |  |

The terminal front panel control uses a tree-structured menu system (Figure 5-2 through Figure 5-5) to access and execute all functions. The base level of this structure is the sign-on message, which is displayed at the front panel upon terminal power-up.

- Line 1 of the sign-on message displays the terminal model number.
- Line 2 displays the version number of the firmware implemented in the terminal.

The main level of the menu system is the SELECT menu, which may be accessed from the base level by pressing any of the arrow keys. From the SELECT menu, any one of three functional categories may be selected:

- Configuration functions
- Monitor functions
- Fault functions

Press  $[\leftarrow]$  or  $[\rightarrow]$  to move from one selection to another.

When the desired function is displayed on line 2, that level can be entered by pressing [ENTER]. Once the functional level has been entered, move to the desired function by pressing [ $\leftarrow$ ] or [ $\rightarrow$ ].

### 5.4 Main Menu

Refer to Figure 5-2.

The following sections contain information about individual menu categories and their functions.

**Note:** The firmware/software referenced in this manual may be an earlier version of the actual firmware/software supplied with the unit.

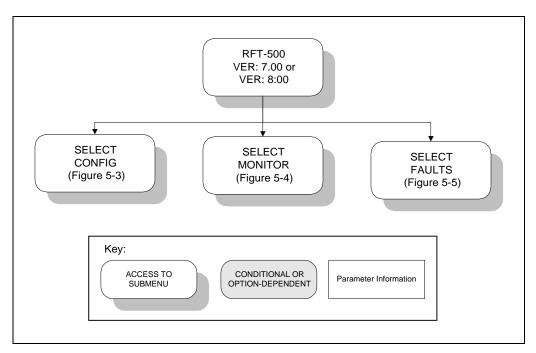



Figure 5-2. Main Menu

### 5.4.1 Configuration

Refer to Figure 5-3.

Terminal configuration may be viewed or changed by entering the CONFIG menu from the SELECT menu on the front panel.

Enter the selected configuration menu by pressing [ENTER]. Press [ $\leftarrow$ ] or [ $\rightarrow$ ] to view the selected configuration parameters. To change a configuration parameter, press [ENTER] to begin the change process, at which point the arrow keys can be used to make the changes.

After the changes are made and the display represents the correct parameters, execute the change by pressing [ENTER]. When [ENTER] is pressed, the necessary programming is initiated by the RFT-500.

To undo a parameter change prior to executing it, simply press [CLEAR].

The following table describes each configuration function in detail.

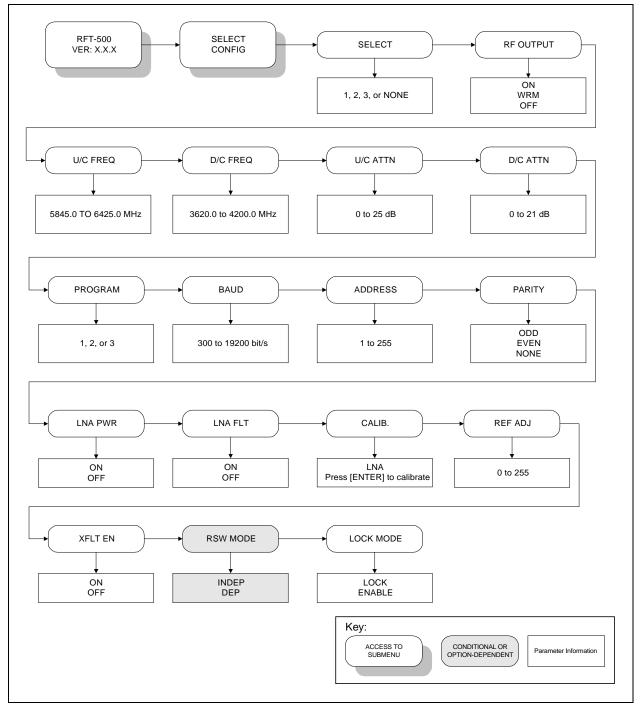



Figure 5-3. Select Configuration Menu

| Function  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SELECT    | Selects any one of the "preset" configurations. The user must first program (store)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| SELLOT    | configuration parameters in the PROGRAM menu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|           | On entry, the current Select parameter will appear in the menu. Press [ $\uparrow$ ] or [ $\downarrow$ ] to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|           | select 1, 2, 3, or None. Press [ENTER] to execute the change. If no parameters have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|           | been selected in the PROGRAM menu, default configurations will be loaded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| RF OUTPUT | Programs the RF output to ON, WRM, or OFF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|           | On entry, the current status of the output is displayed. Press an Arrow key to select ON, WRM, or OFF. Press [ENTER] to execute the change.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| U/C FREQ  | Programs the up converter frequency between 5845 and 6425 MHz, in:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|           | VER: 7.00: 2.5 MHz steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|           | VER: 8.00: 125 kHz steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|           | On entry, the current up converter frequency is displayed with the flashing cursor on the first character. Press $[\leftarrow]$ or $[\rightarrow]$ to move the flashing cursor. Press $[\uparrow]$ or $[\downarrow]$ to increment or decrement the digit at the flashing cursor. Press [ENTER] to execute the change.                                                                                                                                                                                                                                                                                |  |  |  |
|           | Note: The frequency is programmable within the specified range. When the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|           | transmitter frequency is changed, the transmitter is automatically turned OFF to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|           | prevent the possible swamping of other channels. To turn the transmitter ON, use the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|           | RF OUTPUT menu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| D/C FREQ  | Programs the down converter frequency between 3620 and 4200 MHz, in:<br>VER: 7.00: 2.5 MHz steps.<br>VER: 8.00: 125 kHz steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|           | On entry, the current down converter frequency is displayed with the flashing cursor on the first character. Press $[\leftarrow]$ or $[\rightarrow]$ to move the flashing cursor. Press $[\uparrow]$ or $[\downarrow]$ to increment or decrement the digit at the flashing cursor. Press [ENTER] to execute the change.                                                                                                                                                                                                                                                                              |  |  |  |
| U/C ATTN  | Programs the up converter output power attenuation from 0 to 25 dB, in 0.5 dB steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|           | On entry, the current up converter attenuation is displayed with the flashing cursor on the first character. Press [ $\uparrow$ ] or [ $\downarrow$ ] to increase or decrease the output power attenuation in 0.5 dB steps. Press [ENTER] to execute the change.                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| D/C ATTN  | Programs the down converter input power attenuation from 0 to 21 dB, in 0.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|           | steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|           | On entry, the current down converter attenuation is displayed with the flashing cursor on the first character. Press [ $\uparrow$ ] or [ $\downarrow$ ] to increase or decrease the output power attenuation in 0.5 dB steps. Press [ENTER] to execute the change.                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| PROGRAM   | Programs or clears the current frequency and attenuator settings as one of the three "preset" selections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|           | On entry, 1*, 2*, or 3* will appear in the window. Press $[\leftarrow]$ or $[\rightarrow]$ to move the cursor from left to right. When the flashing cursor is on any of the "*"s, press $[\uparrow]$ or $[\downarrow]$ to turn the "*" ON or OFF. When the "*" is ON, press [ENTER] to clear stored parameters in the preset location to the left of the "*". When the "*" is OFF, press [ENTER] to store the current frequency and attenuation parameters in the preset location at the cursor. To recall any of the present selections, use the SELECT menu, and select 1, 2, or 3. Press [ENTER]. |  |  |  |

| BAUD      | Programs the baud rate of the terminal.                                                                                         |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| DITOD     |                                                                                                                                 |  |  |  |  |
|           | On entry, the currently selected baud rate of the terminal will be displayed with the                                           |  |  |  |  |
|           | flashing cursor on the first digit on the second line of the display. To change the baud                                        |  |  |  |  |
|           | rate, press [ $\uparrow$ ] or [ $\downarrow$ ] to select a baud rate from 300 to 19200 kbit/s. Press [ENTER] to                 |  |  |  |  |
|           | execute the changes.                                                                                                            |  |  |  |  |
| ADDRESS   | Programs the terminal remote address.                                                                                           |  |  |  |  |
|           |                                                                                                                                 |  |  |  |  |
|           | On entry, the currently selected address of the terminal is displayed with the flashing                                         |  |  |  |  |
|           | cursor on the first character. Press $[\uparrow]$ or $[\downarrow]$ to select the desired address of the                        |  |  |  |  |
|           | terminal from 1 to 255. Press [ENTER] to execute the change.                                                                    |  |  |  |  |
| PARITY    | Programs the parity bit to EVEN, ODD, or NONE.                                                                                  |  |  |  |  |
|           |                                                                                                                                 |  |  |  |  |
|           | On entry, the currently selected parity is displayed. Press an Arrow key to select                                              |  |  |  |  |
| LNA PWR   | EVEN, ODD, or NONE. Press [ENTER] to execute the change.                                                                        |  |  |  |  |
| LINAPWK   | "ON" means LNA power will be available on the center conductor of the coax cable                                                |  |  |  |  |
| INA ELT   | (J4). "OFF" means DC power will be removed from the coax cable.                                                                 |  |  |  |  |
| LNA FLT   | "ON" means the system will declare an LNA fault when applicable. "OFF" means all                                                |  |  |  |  |
| CALIB.    | LNA faults will be ignored by the system.<br>Enables the user to calibrate the LNA. If [ENTER] is pressed, the M&C will perform |  |  |  |  |
| CALID.    | an analog-to-digital conversion of the LNA current, and store the value in the                                                  |  |  |  |  |
|           | Electrically-Erasable Programmable Read-Only Memory (EEPROM). During the                                                        |  |  |  |  |
|           | normal operation, the M&C will monitor the recent LNA current, and compare it to                                                |  |  |  |  |
|           | the stored value. If the LNA deviates by $\pm$ 30%, a fault will be declared.                                                   |  |  |  |  |
| REF ADJ   | Allows adjustment of the 10.000 MHz reference frequency to account for long term                                                |  |  |  |  |
|           | drift. The setting varies from 0 to 255.                                                                                        |  |  |  |  |
| XFLT EN   | Enables or disables the external fault input. For use with external TWTs or SSPAs.                                              |  |  |  |  |
|           | •                                                                                                                               |  |  |  |  |
|           | On entry, the currently selected parameter will appear. Press an Arrow key to select                                            |  |  |  |  |
|           | ON or OFF. Press [ENTER] to execute the change. When ON is selected, all of the                                                 |  |  |  |  |
|           | uplink external faults will appear in the front panel monitoring menus and fault                                                |  |  |  |  |
|           | menus. When OFF is selected, all of the uplink external faults will be masked in the                                            |  |  |  |  |
|           | front panel monitoring menus and fault menus.                                                                                   |  |  |  |  |
| RSW MODE  | For use in a redundant system only (with an RSU-503L switch).                                                                   |  |  |  |  |
|           |                                                                                                                                 |  |  |  |  |
|           | INDEP TX and RX switch independently on fault to the backup terminal.                                                           |  |  |  |  |
|           | DEP switches both TX and RX on fault to the backup terminal.                                                                    |  |  |  |  |
| LOCK MODE | If the system is placed in the LOCK mode, none of the above parameters can be                                                   |  |  |  |  |
|           | changed. This is to prevent accidental changes of the operation conditions by                                                   |  |  |  |  |
|           | unauthorized personnel. The mode must be changed to ENABLE in order to change                                                   |  |  |  |  |
|           | the existing configuration.                                                                                                     |  |  |  |  |

### 5.4.2 Monitor

Refer to Figure 5-4.

The MONITOR menu is accessible from the SELECT menu. When the MONITOR menu is entered, press  $[\leftarrow]$  or  $[\rightarrow]$  to select the desired function.

Each monitor function is displayed in real time as long as it is selected.

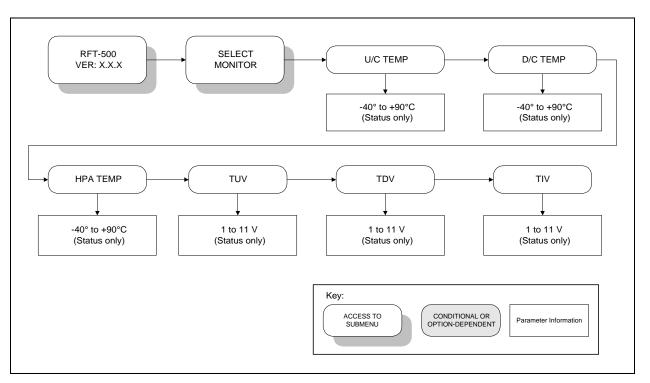



Figure 5-4. Select Monitor Menu

| Function | Description                                           |  |  |  |
|----------|-------------------------------------------------------|--|--|--|
| U/C TEMP | Up converter temperature monitor                      |  |  |  |
|          | Range: -40 to +90°C (-40 to 194°F)                    |  |  |  |
| D/C TEMP | Down converter temperature monitor                    |  |  |  |
|          | Range: -40 to +90°C (-40 to 194°F)                    |  |  |  |
| HPA TEMP | HPA temperature monitor                               |  |  |  |
|          | Range: -40 to +90°C (-40 to 194°F)                    |  |  |  |
| TUV      | Tuning voltage monitor for up converter synthesizer   |  |  |  |
|          | Range: 1 to 11V                                       |  |  |  |
| TDV      | Tuning voltage monitor for down converter synthesizer |  |  |  |
|          | Range: 1 to 11V                                       |  |  |  |
| TIV      | Tuning voltage monitor for the IF LO                  |  |  |  |
|          | Range: 1 to 11V                                       |  |  |  |

This page is intentionally left blank.

### 5.4.3 Faults

Refer to Figure 5-5.

The FAULTS menu is accessible from the SELECT menu. Faults are similar to monitor functions, as they display the current fault status of the group being displayed.

Press  $[\leftarrow]$  or  $[\rightarrow]$  to move between the faults.

The current fault status is displayed as "OK" or "FLT" for each parameter monitored. "OK" indicates that no fault exists, while "FLT" indicates that a fault exists.

Press [CLEAR] to exit this level of operation and return to the previous level.

The following list outlines the faults monitored in the FAULTS menu. Refer to Chapter 7 for troubleshooting procedures for each displayed fault.

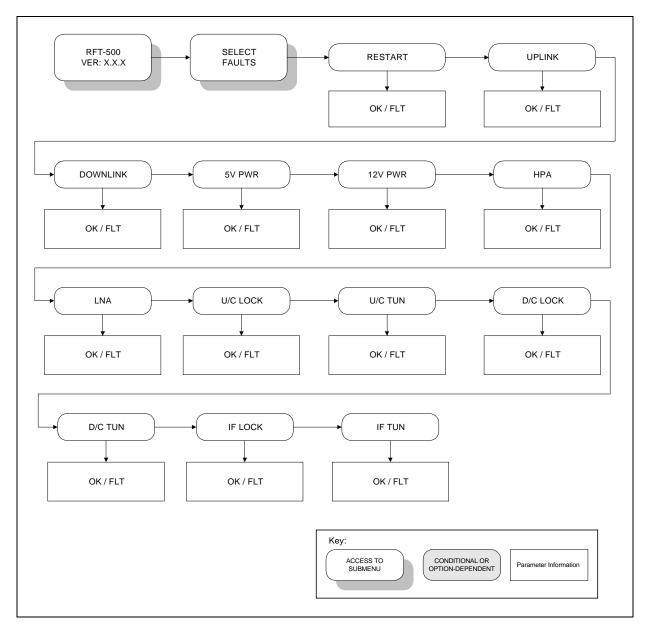



Figure 5-5. Select Faults Menu

| Fault    | Description                                                                             |  |  |  |
|----------|-----------------------------------------------------------------------------------------|--|--|--|
| RESTART  | M&C microprocessor experienced a restart due to power failure or watchdog timer         |  |  |  |
| KESTAKI  | time-out                                                                                |  |  |  |
|          |                                                                                         |  |  |  |
| UPLINK   | U/L fault caused by synth, U/C, IFLO, or HPA.                                           |  |  |  |
| DOWNLINK | D/L fault caused by synth, D/C, IFLO, or LNA.                                           |  |  |  |
| 5V PWR   | +5V power supply fault. This is a status-only fault, and will not turn the transmitter  |  |  |  |
|          | OFF.                                                                                    |  |  |  |
| 12V PWR  | +12V power supply fault. This is a status-only fault, and will not turn the transmitter |  |  |  |
|          | OFF.                                                                                    |  |  |  |
| HPA      | High Power Amplifier fault. Typically indicates that the HPA is not present or is not   |  |  |  |
|          | operating. This fault will turn the RF transmitter off.                                 |  |  |  |
| LNA      | Low noise amplifier fault. Typically indicates that the LNA is not present, has failed, |  |  |  |
|          | or exceeded the high or low fault window trip point. This fault will not turn the       |  |  |  |
|          | transmitter off.                                                                        |  |  |  |
| U/C LOCK | Up converter lock fault. Indicates the up converter is not locked up. This fault will   |  |  |  |
|          | turn the transmitter off.                                                               |  |  |  |
| U/C TUN  | Up converter tuning fault.                                                              |  |  |  |
| D/C LOCK | Down converter lock fault. Indicates the down converter is not locked up.               |  |  |  |
|          | This fault will NOT turn the transmitter off.                                           |  |  |  |
| D/C TUN  | Down converter tuning fault.                                                            |  |  |  |
| IF LOCK  | IF synthesizer lock fault. This fault will turn the transmitter OFF.                    |  |  |  |
| IF TUN   | IF tuning fault.                                                                        |  |  |  |

This page is intentionally left blank.

# Chapter 6. THEORY OF OPERATION

This chapter provides the basic theory of operation for the Monitor and Control (M&C) board, high stability oscillator, IFLOs synthesizers, and the up and down converters.

Note: Refer to Appendix A for 140 MHz configuration.

### 6.1 Monitor and Control

The RFT-500 uses a sophisticated microcontroller module to perform the M&C functions of the terminal. This board (Figure 6-1) is located inside of the RFT-500, on top of the other assemblies.

The M&C monitors the RFT-500 and provides configuration updates to other modules within the terminal when necessary.

Terminal configuration parameters are maintained in EEPROMs, which provides for total recovery after a power-down situation.

Fault monitoring and status gathering are also provided.

All RFT-500 functions are accessible through the local front panel keypad/display or a remote communications interface.

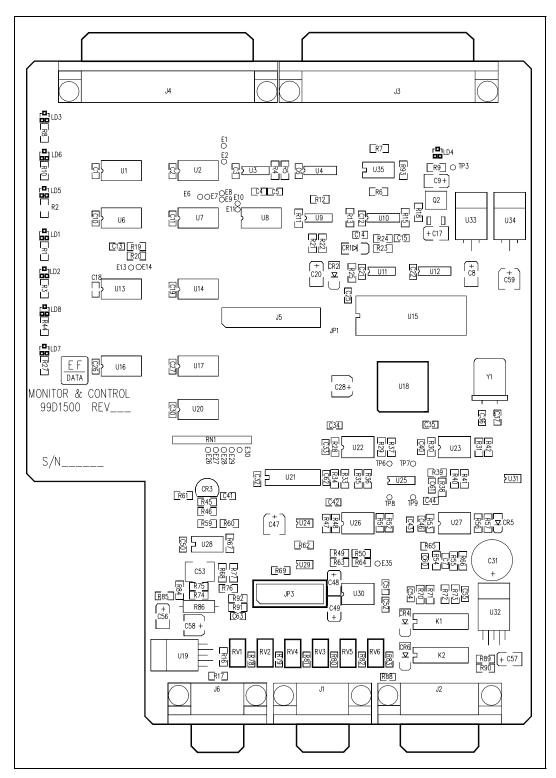



Figure 6-1. M&C Board

### 6.1.1 EEPROM Memory

EEPROM memory on the M&C module allows it to retain configuration information without prime power for at least one year. If the terminal is powered down, the following sequence will be carried out by the M&C microcontroller:

- 1. When power is reapplied, the microcontroller checks the EEPROM's Random Access Memory (RAM) to see if valid data has been retained. If valid data has been retained, the terminal is reconfigured to the configuration maintained in EEPROM.
- 2. If EEPROM memory fails the valid data test, a default configuration from Read Only Memory (ROM) is loaded into the system.

### 6.1.2 Remote Interface

The functions of the RFT-500 can be remotely controlled and monitored via an EIA-485 or EIA-232 communications link. The M&C module must be hardware configured to one of the two interfaces.

The EIA-485 interface makes it possible to operate 255 terminals on a common communications link.

The EIA-232 interface is used to communicate with a single terminal.

Refer to Figure 6-2 for the jumper placement at JP3.

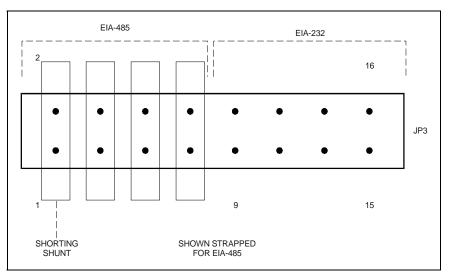



Figure 6-2. M&C Jumper Placement at JP3

### 6.1.2.1 Remote Interface Specification

Refer to Appendix B for information on remote control operation.

### 6.1.3 Terminal Default Conditions

On initial power-up, the unit will default to the following parameters:

| Parameter      | Default     |
|----------------|-------------|
| Baud Rate      | 9600        |
| Parity         | Even        |
| Device Address | 1           |
| U/C Gain       | Minimum     |
| D/C Gain       | Minimum     |
| RF Output      | OFF         |
| U/C Frequency  | 6135.00 MHz |
| D/C Frequency  | 3925.00 MHz |

### 6.1.4 Theory of Operation

Refer to Figure 6-3 for a functional block diagram of the M&C.

The M&C board performs the following operations:

- Receives the desired frequency from either the remote EIA-232/EIA-485 or local keypad, and after converting it to a synthesizer setting, stores it to the applicable synthesizer output latch.
- Reads the thermistors located in the up converter, down converter, and HPA, and converts them to temperatures for display.
- Reads the characterization EEPROMs in the up converter, down converter, and HPA, and calculates an Automatic Gain Control (AGC) voltage based on frequency and temperature to linearize the respective module.
- Turns the cooling fan ON or OFF, depending on the temperature.
- Receives fault inputs from all modules, and presents them to the remote EIA-232/EIA-485 and the optional local keypad display.
- Performs an initial current sense on the LNA, and stores the reading in the EEPROM. Subsequent current sense readings are taken and compared to the initial reading to determine a fault.

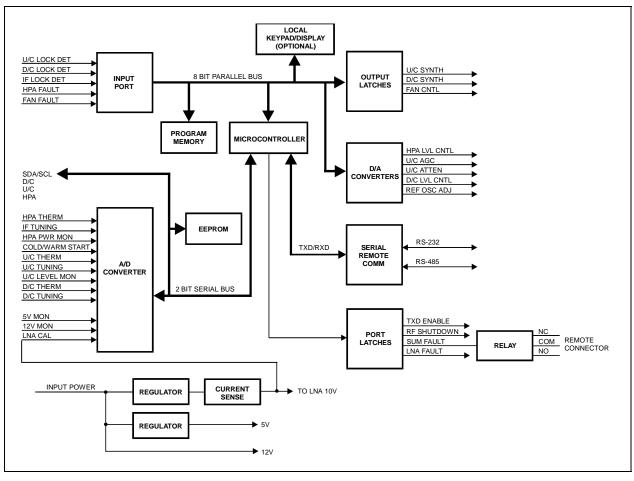



Figure 6-3. M&C Functional Block Diagram

## 6.1.5 M&C Board Connector Pinouts

### 6.1.5.1 EIA-232/EIA-485 Remote Control (J1)

The remote interface is provided on a 9-pin female D connector (Table 6-1). The remote connector is a Data Circuit Terminating Equipment (DCE) interface.

| Pin # | EIA-232 | EIA-485 | Description                                        |
|-------|---------|---------|----------------------------------------------------|
| 1     | GND     | GND     | Ground                                             |
| 2     | TD/TX   |         | Transmit Data                                      |
| 3     | RD/RX   |         | Receive Data                                       |
| 4     |         | +RX/TX  | Plus Transmit or Receive                           |
| 5     | GND     | -RX/TX  | Negative Transmit or Receive                       |
| 6     | DSR     |         | Data Set Ready                                     |
| 7     | RTS     |         | Ready to Send                                      |
| 8     | CTS     | +RX/TX  | Clear to Send (EIA-485 — Plus Transmit or Receive) |
| 9     |         | -RX/TX  | Negative Transmit or Receive Data                  |

#### Notes:

- 1. Clear to Send (CTS) is tied to Ready to Send (RTS) in EIA-232 mode.
- 2. The pinout for Data Terminal Equipment (DTE) interface is provided for EIA-232.

### 6.1.5.2 Remote Relay Control, J2 DB15-Female

Refer to Table 6-2 for pin assignments.

| Pin # | Name        | Description                             |
|-------|-------------|-----------------------------------------|
| 1     | EXT PWR     | Output voltage, 11V, 1A                 |
| 9     | LNA_PWR     | 10V to LNA                              |
| 2     | NO A        | Summary fault relay A                   |
| 10    | COM A       | Normal operation, common connects to NO |
| 3     | NC A        | Fault mode, common connects to NC       |
| 11    | NO B        | Summary fault relay B                   |
| 4     | COM B       | Normal operation, common connects to NO |
| 12    | NC B        | Fault mode, common connects to NC       |
| 5     | SPARE       |                                         |
| 13    | SPARE       |                                         |
| 6     | ALOG TST    | Analog voltage output, TBD              |
| 14    | LNA_PWR_RTN | Ground Return for LNA                   |
| 7     | EXT INPUT2  | Input, logic 0 (normal) or 5V (fault)   |
| 15    | EXT TWT FLT | Input, logic 0 or 5V, used for TWT.FLT  |
| 8     | GND         | Ground                                  |

| Table 6-2.  | <b>Remote Relay</b> | Control. J2  | DB15-Female  |
|-------------|---------------------|--------------|--------------|
| 1 abic 0-2. | Kennote Kenay       | Conti 01, 32 | DD15-1 cmarc |

# 6.1.5.3 HPA, PS, U/C, and D/C, J3 DB37-Male

Refer to Table 6-3 for pin assignments.

| Pin # | Name          | Description                                               |  |
|-------|---------------|-----------------------------------------------------------|--|
| 1     | 12.5V PWR     | Input power to M&C, 12.5V, 220 mA                         |  |
| 20    | 12.5V PWR     | Input power to M&C, 12.5V, 220 mA                         |  |
| 2     | DC LNA PWR    | Output power to DC, 10V, 100 mA                           |  |
| 21    | GND           | M&C ground                                                |  |
| 3     | GND           | M&C ground                                                |  |
| 22    | FAN TACH      | Input pulse, 0 to 12V, 9 millisecond period               |  |
| 4     | FREQ CNTRL    | Output, voltage 0 to 10V                                  |  |
| 23    | FAN CNTRL     | Output, NPN OC Transistor with resistor to 5V             |  |
| 5     | SPARE         |                                                           |  |
| 24    | EXT OUTPUT1   | Output, digital CMOS level — function TBD                 |  |
| 6     | EXT INPUT3    | Input, digital CMOS — function TBD                        |  |
| 25    | HPA FLT COM   | Output, ground connection to relay common                 |  |
| 7     | HPA FLT NO    | Input from HPA, contact to COM during normal operation    |  |
| 26    | SPARE         |                                                           |  |
| 8     | SPARE         |                                                           |  |
| 27    | HPA THERM     | Input, 5K thermistor to ground located in HPA             |  |
| 9     | HPA LEVEL CON | Output, 0 to 4 VDC for AGC control of HPA output          |  |
| 28    | HPA SHUTDOWN  | Output, NPN OC transistor to GND, low produces shut-off   |  |
| 10    | HPA PWR MON   | Input from HPA, 0 to 4V                                   |  |
| 29    | SPARE         |                                                           |  |
| 11    | SPARE         |                                                           |  |
| 30    | SPARE         |                                                           |  |
| 12    | DC LEVEL CON  | Output, analog voltage 0 to 4V, AGC control of D/C output |  |
| 31    | DC LEVEL MON  | Input, 0 to 4V                                            |  |
| 13    | DC THERM      | Input, 5K thermistor to ground located in D/C             |  |
| 32    | SPARE         |                                                           |  |
| 14    | HPA SDA       | Bi-directional serial data                                |  |
| 33    | DC SDA        | Bi-directional serial data                                |  |
| 15    | UC SDA        | Bi-directional serial data                                |  |
| 34    | HPA SCL       | Output, serial clock                                      |  |
| 16    | DC SCL        | Output, serial clock                                      |  |
| 35    | UC SCL        | Output, serial clock                                      |  |
| 17    | SPARE         |                                                           |  |
| 36    | UC LEVEL MON  | Input, 0 to 4V                                            |  |
| 18    | UC THERM      | Input, 5K thermistor to ground located in U/C             |  |
| 37    | UC ATT (FLC)  | Output, analog voltage 0 to 4V, attenuator control        |  |
| 19    | UC AGC (CLC)  | Output, analog voltage 0 to 4V, AGC control               |  |

### Table 6-3. HPA, PS, U/C, and D/C, J3 DB37-Male

# 6.1.5.4 Synthesizers (DC/UC/LO), J4 DB37-Female

Refer to Table 6-4 for pin assignments.

| Pin # | Name          | Description                             |                     |
|-------|---------------|-----------------------------------------|---------------------|
| 1     | UC LO A0      | Output CMOS level, LSB                  | (selects the 2nd    |
| 20    | UC LO A1      | Output CMOS level, 2LSB                 | divide-by number)   |
| 2     | UC LO A2      | Output CMOS level, 2MSB                 |                     |
| 21    | UC LO A3      | Output CMOS level, MSB                  |                     |
| 3     | UC LO G0      | Output CMOS level, LSB                  | (selects gain over  |
| 22    | UC LO G1      | Output CMOS level, 2LSB                 | frequency)          |
| 4     | UC LO G2      | Output CMOS level, 2MSB                 |                     |
| 23    | UC LO G3      | Output CMOS level, MSB                  |                     |
| 5     | UC LO N0      | Output CMOS level, LSB                  | (selects the first  |
| 24    | UC LO N1      | Output CMOS level, 2LSB                 | divide-by number    |
| 6     | UC LO N2      | Output CMOS level, 3LSB                 | in the synthesizer) |
| 25    | UC LO N3      | Output CMOS level, 3MSB                 |                     |
| 7     | UC LO N4      | Output CMOS level, 2MSB                 |                     |
| 26    | UC LO N5      | Output CMOS level, MSB                  |                     |
| 8     | DC LO LCK DET | Input, $0V = locked$ , $5V = unlocked$  |                     |
| 27    | DC LO T_MON   | Input, 0 to 11V, nominal reading $= 6V$ |                     |
| 9     | SPARE         |                                         |                     |
| 28    | SPARE         |                                         |                     |
| 10    | IF LCK DET    | Input, $0V = locked$ , $5V = unlocked$  |                     |
| 29    | IF T_MON      | Input, 0 to 11V, nominal reading $= 6V$ |                     |
| 11    | SPARE         |                                         |                     |
| 30    | DC LO A0      | Output CMOS level, LSB                  | (selects the 2nd    |
| 12    | DC LO A1      | Output CMOS level, 2LSB                 | divide-by number)   |
| 31    | DC LO A2      | Output CMOS level, 2MSB                 |                     |
| 13    | DC LO A3      | Output CMOS level, MSB                  |                     |
| 32    | DC LO G0      | Output CMOS level, LSB                  | (selects gain       |
| 14    | DC LO G1      | Output CMOS level, 2LSB                 | over frequency)     |
| 33    | DC LO G2      | Output CMOS level, 2MSB                 |                     |
| 15    | DC LO G3      | Output CMOS level, MSB                  |                     |
| 34    | DC LO N0      | Output CMOS level, LSB                  | (selects the first  |
| 16    | DC LO N1      | Output CMOS level, 2LSB                 | divide by number    |
| 35    | DC LO N2      | Output CMOS level, 3LSB                 | in the synthesizer) |
| 17    | DC LO N3      | Output CMOS level, 3MSB                 |                     |
| 36    | DC LO N4      | Output CMOS level, 2MSB                 |                     |
| 18    | DC LO N5      | Output CMOS level, MSB                  |                     |
| 37    | UC LO LCK DET | Input, $0V = locked$ , $5V = unlocked$  |                     |
| 19    | UC LO T_MON   | Input, 0 to 11V, nominal reading $= 6V$ |                     |

### Table 6-4. Synthesizers (DC/UC/LO), J4 DB37-Female

### 6.1.5.5 Keypad Display, 24-Pin (12 x 2) Ribbon Connector (J5)

The front panel/display keypad is an optional feature which allows the user to configure and monitor status of the terminal locally.

All functions are also accessible from the remote port.

When this option has been installed, the 24-pin ribbon connector will be routed from J5 of the M&C board to the keypad/display assembly.

Refer to Table 6-5 for pin assignments.

| Pin # | Name       | Description                  |
|-------|------------|------------------------------|
| 1     | /A0        | Address Data Line 0 Inverted |
| 3     | /A1        | Address Data Line 1 Inverted |
| 5     | A2         | Address Data Line 2          |
| 7     | A3         | Address Data Line 3          |
| 9     | A4         | Address Data Line 4          |
| 11    | A5         | Address Data Line 5          |
| 13    | /D0000     | Address D000 Inverted        |
| 15    | /BFR READ  | Buffered Read Inverted       |
| 17    | /BFR WRITE | Buffered Write Inverted      |
| 19    | SPARE      |                              |
| 21    | /KB INTRPT | Reserved For KB Interrupt    |
| 23    | GND        | Ground                       |
| 2     | +5V        | +5V                          |
| 4     | SPARE      |                              |
| 6     | BFRD AD0   | Buffered Address Data Line 0 |
| 8     | BFRD AD1   | Buffered Address Data Line 1 |
| 10    | BFRD AD2   | Buffered Address Data Line 2 |
| 12    | BFRD AD3   | Buffered Address Data Line 3 |
| 14    | BFRD AD4   | Buffered Address Data Line 4 |
| 16    | BFRD AD5   | Buffered Address Data Line 5 |
| 18    | BFRD AD6   | Buffered Address Data Line 6 |
| 20    | BFRD AD7   | Buffered Address Data Line 7 |
| 22    | SPARE      |                              |
| 24    | SPARE      |                              |

#### Table 6-5. Keypad Display, 24-Pin Ribbon Connector (J5)

### 6.1.6 Test Points and LEDs

Refer to Section 7.1.

### 6.2 High Stability Oscillator

The high stability oscillator provides a low phase noise, frequency-stable 10 MHz source for the up converter, down converter, synthesizers, and IFLO.

The internal oven, which is provided for additional stability, operates directly from the 12V power source. The electronic control circuitry is buffered by an active filter.

The sinewave output is converted to a CMOS square wave before being output to the synthesizers.

Refer to Figure 6-4 for a block diagram of the high stability oscillator.

### 6.2.1 Specifications

Refer to Table 6-6 for specifications.

| Parameter                         | Specification                                                    |
|-----------------------------------|------------------------------------------------------------------|
| Frequency                         | 10 MHz                                                           |
| Frequency Stability               | $\pm 1 \times 10^{-8}$                                           |
| (-40° to +70°C [-40° to +158°F])  |                                                                  |
| Output Level                      | CMOS voltages (+5V)                                              |
| Output Waveform                   | Square Wave                                                      |
| Input Voltage                     | 12.5V                                                            |
| Input Current                     | 600 mA at turn-on, 250 mA after                                  |
|                                   | warm-up at +25°C (+77°F)                                         |
| Warm-up                           | minutes to within $1 \times 10^{-7}$ of final frequency at +25°C |
|                                   | (+77°F)                                                          |
| Phase Noise (Maximum) 1 Hz        |                                                                  |
| Measurement bandwidth measured at |                                                                  |
| 10 MHz:                           |                                                                  |
| 10 Hz                             | -120 dBc                                                         |
| 100 Hz                            | -150 dBc                                                         |
| 1 kHz                             | -160 dBc                                                         |
| 10 kHz                            | -165 dBc                                                         |
| Vibrational Sensitivity           | $1 \times 10^{-9}/g$                                             |
| Aging                             | $5 \ge 10^{-10}$ /day, $1 \ge 10^{-1}$ /year                     |
| Frequency Deviation (mechanical)  | To compensate for 10 years aging                                 |
| Frequency Deviation (electrical)  | $\pm 2 \times 10^{-6}$ minimum, 0 to 10 VDC                      |

#### Table 6-6. High Stability Oscillator Specifications

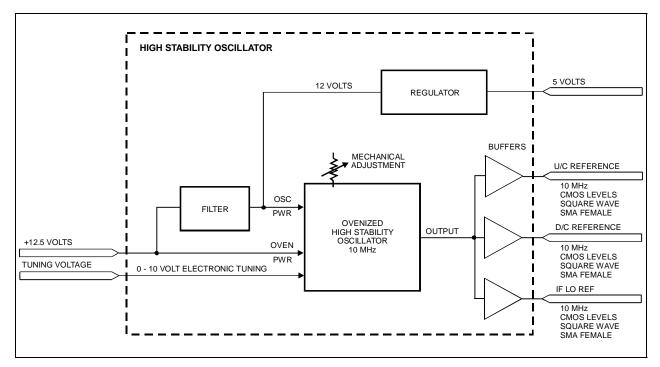



Figure 6-4. High Stability Oscillator Block Diagram

### 6.3 IF Local Oscillator

The IF local oscillator (IFLO) contains:

- Voltage Controlled Oscillator (VCO)
- Loop filter
- Divide-down chain

The 10 MHz input reference is multiplied up to 2120 MHz in three steps (2 x 2 x 53), then distributed to both synthesizers.

The 10 MHz output reference is multiplied by 106, and is sent to both the up and down converters.

The loop tracking voltage is sent to the M&C board, where it is monitored along with the lock detect fault.

Refer to Figure 6-5 for a block diagram of the IFLO.

### 6.3.1 Specifications

Refer to Table 6-7 for specifications.

| Parameter        | Specifications                       |
|------------------|--------------------------------------|
| Input            | 10 MHz square wave, CMOS levels      |
| Output           | 1060 MHz (2 each), 2120 MHz (2 each) |
| Connectors       | SMA                                  |
| Output Impedance | 50Ω                                  |
| Output Level     | +7 dBm min                           |

### Table 6-7. IL Local Oscillator Specifications

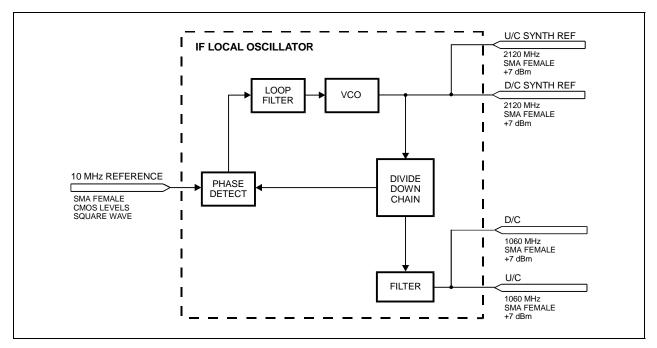



Figure 6-5. IF Local Oscillator Block Diagram

### 6.4 Synthesizer

The RFT-500 uses two synthesizers (optional single synthesizer):

- One for the down converter to convert the RF input to a 70 MHz IF output
- One for the up converter to convert the 70 MHz input to the RF output

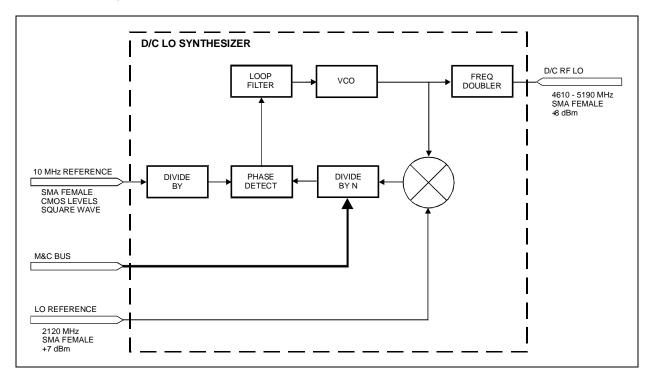
The purpose of the synthesizer module is to convert the 10 MHz reference signal to a variable frequency to perform the conversion. A single synthesizer option is available. When the up converter is programmed, the down converter frequency is automatically selected.

### 6.4.1 Specifications

Refer to Table 6-8 for specifications.

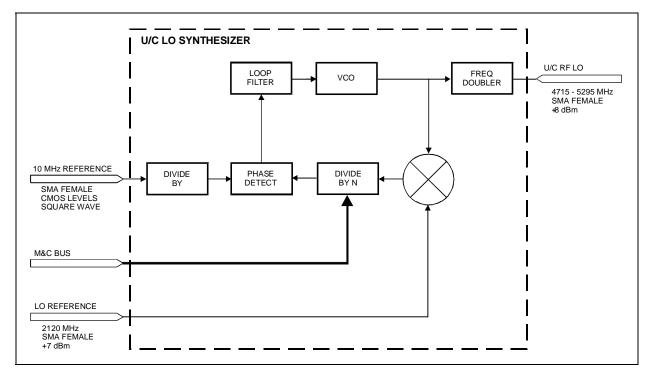
| Parameter      | Specification                    |
|----------------|----------------------------------|
| RF Inputs:     | 10 MHz CMOS square wave          |
| _              | 2120 MHz reference (from IFLO)   |
| Connector type | SMA                              |
| Impedance      | 50Ω                              |
| Input level    | +7 dBm                           |
| RF Outputs:    | U/C frequencies 4715 to 5295 MHz |
|                | D/C frequencies 4610 to 5190 MHz |
|                | Single 4662.5 to 5242.5 MHz      |
| Connector type | SMA                              |
| Impedance      | 50Ω                              |
| Level          | +7 dBm                           |

**Table 6-8. Synthesizer Specifications** 


### 6.4.2 Theory of Operation

The synthesizer module multiplies the 10 MHz reference clock to a variable clock by use of:

- VCOs
- Loop filters
- Phase detectors
- Variable divide-down chain


The divide-down chain is controlled by the M&C board through the use of 14 parallel CMOS signals. The down converter divide-down chain varies from 150 to 380. The up converter divide-down chain varies from 222 to 422. A frequency doubler is then applied to produce the final output.

The VCO tuning voltage is sent to the M&C for monitoring, as well as a lock detect fault.



Refer to Figure 6-6 and Figure 6-7 for block diagrams of the down and up converter LO synthesizers.

Figure 6-6. Down Converter Synthesizer Block Diagram





## 6.5 Down Converter

The function of the down converter is to convert the C-Band signal from the LNA to a 70 MHz IF signal for use in the modem.

Refer to Figure 6-8 for a functional block diagram of the down converter.

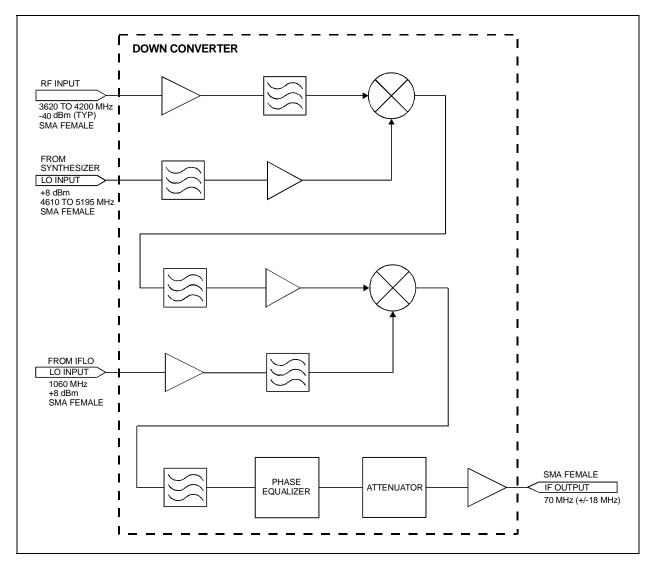



Figure 6-8. Down Converter Block Diagram

# 6.5.1 Specifications

Refer to Table 6-9 for specifications.

| Down Converter           |                  |  |  |
|--------------------------|------------------|--|--|
| Input Frequency          | 3620 to 4200 MHz |  |  |
| Input Connector          | SMA Female       |  |  |
| Input Impedance          | 50Ω              |  |  |
| Input VSWR               | 1.5:1            |  |  |
| Output Frequency         | 70 MHz, ± 18 MHz |  |  |
| Output Connector         | SMA Female       |  |  |
| Output VSWR              | 1.3:1            |  |  |
| 1 dB Compression         | +17 dBm          |  |  |
| 1st IF Synthesizer Input |                  |  |  |
| Frequency                | 4610 to 5195 MHz |  |  |
| Level                    | +8 dBm           |  |  |
| Connector                | SMA Female       |  |  |
| Return Loss              | 14 dB            |  |  |
| Impedance                | 50Ω              |  |  |
| 2nd IFLO Input           |                  |  |  |
| Frequency                | 1060 MHz         |  |  |
| Level                    | +8 dBm           |  |  |
| Connector                | SMA Female       |  |  |
| Return Loss              | 14 dB            |  |  |
| Impedance                | 50Ω              |  |  |

#### 6.5.2 Theory of Operation

The RFT-500 down converter utilizes a dual conversion process to convert from an input RF frequency band of 3620 to 4200 MHz, to an output baseband 70 MHz IF signal.

The first conversion requires a down converter synthesizer frequency input to mix with the RF input. The M&C board controls the frequency selection of the synthesizer. The synthesizer output frequency band is from 4610 to 5190 MHz, in 2.5 MHz steps (optional 125 kHz step size available).

The output of the first mixing process is at a frequency of 990 MHz. The 990 MHz output is applied to the second mixer, which mixes with an IFLO frequency input at 1060 MHz from the IFLO module. The output of the second mixer is the desired baseband 70 MHz IF signal.

The M&C board interpolates the factory preset compensation data that is stored in an EEPROM inside the down converter. This data allows the M&C board to command and compensate the down converter's output power, ensuring proper output power levels over the entire frequency and temperature range.

The M&C board also supplies the DC power for the LNA, which is subsequently injected into the RF input connector.

#### 6.6 Up Converter

The function of the up converter is to convert the 70 MHz IF signal used in the indoor unit modem to a C-Band signal to be sent to the HPA.

Refer to Figure 6-9 for a functional block diagram of the up converter.

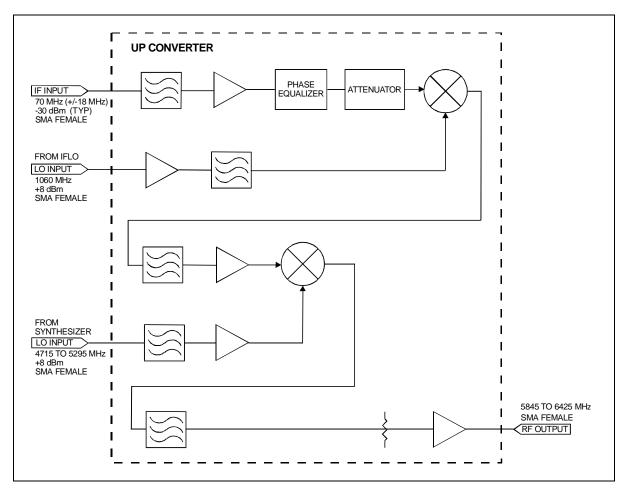



Figure 6-9. Up Converter Block Diagram

# 6.6.1 Specifications

Refer to Table 6-10 for up converter specifications.

| Up Converter     |                                     |  |
|------------------|-------------------------------------|--|
| Input Frequency  | $70 \text{ MHz} \pm 18 \text{ MHz}$ |  |
| Input Connector  | SMA Female                          |  |
| Input Impedance  | 50Ω                                 |  |
| Input VSWR       | 1.3:1                               |  |
| Output Frequency | 5845 to 6425 MHz                    |  |
| Output Connector | SMA Female                          |  |
| Output VSWR      | 1.5:1                               |  |
| 1 dB Compression | +10 dBm                             |  |
| 1st ]            | RF Local Oscillator Input           |  |
| Frequency        | 1060 MHz                            |  |
| Level            | +8 dBm                              |  |
| Connector        | SMA Female                          |  |
| Return Loss      | 14 dB                               |  |
| Impedance        | 50Ω                                 |  |
| 2n               | d RF Synthesizer Input              |  |
| Frequency        | 4715 to 5295 MHz                    |  |
| Level            | +8 dBm                              |  |
| Connector        | SMA Female                          |  |
| Return Loss      | 14 dB                               |  |
| Impedance        | 50Ω                                 |  |

 Table 6-10. Up Converter Specifications

#### 6.6.2 Theory of Operation

The RFT-500 up converter utilizes a dual conversion process to convert from a baseband 70 MHz IF signal to the output RF frequency band.

The first conversion requires an IFLO frequency input at 1060 MHz from the IFLO module. The output of the first mixing process is at a frequency of 1130 MHz.

The 1130 MHz output is applied to the second mixer which mixes with the synthesizer frequency input. The up converter synthesizer output frequency band is from 4715 to 5295 MHz, in 2.5 MHz steps (optional 125 kHz steps). The M&C board controls the frequency selection of the synthesizer.

The output of the second mixer is the desired RF frequency band of 5845 to 6425 MHz.

The M&C board interpolates the factory preset compensation data that is stored in an EEPROM inside the up converter. This data allows the M&C board to command and compensate the up converter's output power, ensuring proper output power levels over the entire frequency and temperature range.

The M&C also controls the up converter attenuator.

# Chapter 7. MAINTENANCE

This chapter provides information on how to use test points and LEDs on the M&C board for troubleshooting. In addition, this chapter provides guidelines for troubleshooting faults.

#### 7.1 Test Points and LEDs

Test points and LEDs are included on the M&C board for quick troubleshooting references. The LEDs are a visual reference. Test points are used when more troubleshooting is required.

Refer to Table 7-1 for a list of LEDs and their functions. Refer to Table 7-2 for a list of test points on the M&C board.

| Name    | Color  | Description                                                                        |
|---------|--------|------------------------------------------------------------------------------------|
| HPA FLT | Red    | Illuminates when the HPA is faulted or turned off. This fault will cause the       |
|         |        | transmitter to turn off.                                                           |
| LD IF   | Red    | Illuminates when the IF local oscillator is out of lock. This fault will cause the |
|         |        | transmitter to turn off.                                                           |
| LD UC   | Red    | Illuminates when the up converter local oscillator is out of lock. This fault will |
|         |        | cause the transmitter to turn off.                                                 |
| LD DC   | Red    | Illuminates when the down converter local oscillator is out of lock. This fault    |
|         |        | will cause the transmitter to turn off.                                            |
| LNA FLT | Red    | Illuminates when the LNA is faulted, or LNA has not been calibrated.               |
| RF ON   | Yellow | Illuminates when the HPA is turned on.                                             |
| 12.5V   | Green  | Illuminates when 12.5V is applied to board.                                        |
| 5V      | Green  | Illuminates when 5V is applied to board.                                           |

| Test Point | Description                               |
|------------|-------------------------------------------|
| TP3        | 12.5V input power voltage                 |
| TP6        | Down converter AGC voltage (0 to 4V)      |
| TP7        | Up converter attenuator voltage (0 to 4V) |
| TP8        | HPA AGC voltage (0 to 4V)                 |
| TP9        | Up converter AGC voltage (0 to 4V)        |

Table 7-2. Test Points

# 7.2 Fault Isolation

Once the terminal has been set up for operation, troubleshooting faults can be accomplished by monitoring the terminal faults either remotely or via the optional front panel/keypad and display.

System faults are reported in the FAULT menu.

Table 7-3 should be used in isolating a problem and deciding the appropriate action to be taken.

Refer to Figure 7-1 and Figure 7-2 for the locations of the various modules mentioned in this list.

| Fault    | Possible Problem and Action                                                                                                                                                                                                            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +5 VOLT  | +5V power supply fault.                                                                                                                                                                                                                |
| +12 VOLT | Indicates the +5V power supply on the M&C board is at a high or a low voltage condition. Allowable level variation is ± 5%. Check for a short on the +5V line, or faulty connection at P3 on the M&C.<br>+12V supply fault.            |
|          | Indicates the +12V supply is at a high or low voltage condition. Check for a short on the +12V line, or faulty connections between any of the internal modules.                                                                        |
| HPA      | High Power Amplifier fault.                                                                                                                                                                                                            |
|          | Check for a loose connections at P12 or that XFE has not been turned on, then replace<br>the HPA. The HPA is not intended to be opened in the field. Once the problem has been<br>isolated, the transmitter must be turned back on.    |
| LNA      | Low Noise Amplifier fault.                                                                                                                                                                                                             |
|          | Check the RF cable to the LNA and that LFE is not on with no LNA attached. If acceptable, replace the LNA.                                                                                                                             |
| U/C LOCK | Up converter lock fault.                                                                                                                                                                                                               |
|          | Check for loose connections at P7, P8, and P4. Also, check all RF coaxial connectors on the U/C synthesizer and U/C board before replacing modules. Once the problem has been isolated, the transmitter must be turned back on.        |
| U/C TUN  | Up converter tuning fault.                                                                                                                                                                                                             |
|          | Check for loose connections at P7, P8, and P4. Also, check all RF coaxial connectors on the U/C synthesizer and U/C board before replacing the modules. Once the problem has been corrected, the transmitter must be turned back on.   |
| D/C TUN  | Down converter tuning fault.                                                                                                                                                                                                           |
|          | Check for loose connections at P10, P11, and P4. Also, check all RF coaxial connectors on the D/C synthesizer and D/C board before replacing the modules. Once the problem has been corrected, the transmitter must be turned back on. |
|          | Note: Not available in single synthesizer option.                                                                                                                                                                                      |

Table 7-3. Fault Isolation

| Fault    | Possible Problem and Action                                                                                                                                                                                                                           |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D/C LOCK | Down converter lock fault.                                                                                                                                                                                                                            |
|          | Check for loose connections at P10, P11, and P4. Also, check all RF coaxial connectors on the D/C synthesizer and D/C before replacing the modules. Once the problem has been corrected, the transmitter must be turned back on.                      |
|          | Note: Not available in single synthesizer option.                                                                                                                                                                                                     |
| IF LOCK  | IF Lock fault.                                                                                                                                                                                                                                        |
|          | Check for loose connections at P9 and P4. Also, check all RF coaxial connectors on the IF Local Oscillator module. If all connections are good, replace the IFLO module. Once the problem has been corrected, the transmitter must be turned back on. |
| IF TUN   | IF Tuning fault.                                                                                                                                                                                                                                      |
|          | Check for loose connections at P9 and P4. Also, check all RF coaxial connectors on the IFLO module. If all connections are good, replace the IF local oscillator module. Once the problem has been corrected, the transmitter must be turned back on. |

#### Table 7-3. Fault Isolation (Continued)

Figure 7-1. RFT-500 Inside Front View

Figure 7-2. RFT-500 Inside Rear View

# Chapter 8. EQUIPMENT LIST

This chapter describes the equipment required for installing the HPCST-5000 terminal system.

#### 8.1 Equipment List

Refer to Table 8-1 and Table 8-2 for EFData MOD kit part numbers. The following kits required to perform the tasks specified in this manual can be obtained from EFData Corporation, Customer Support Department.

| Description                 | EFData P/N  | Note     |
|-----------------------------|-------------|----------|
| RFT-500 (No HPA):           | .RFT500     | Optional |
| Universal Mounting Kit      | KT/3576     | Optional |
| Spar Mount Kit              | KT/4061     | Optional |
| LNA Assembly, Standard, CST | .CA         | Optional |
| SSPA-500:                   |             |          |
| 75W                         | RF/SSPA75C  | Optional |
| 100W                        | RF/SSPA100C | Optional |
| 125W                        | RF/SSPA125C | Optional |
| 150W                        | RF/SSPA150W | Optional |
| Universal Mount Kit         | KT/6698     | Optional |
| Spar Mount Kit              | KT/6699     | Optional |
| Cable Accessories:          |             |          |
| Waveguide Kit, C-Band       | KT/5115     | Optional |
| Line Cord, RFT-500          | CA/2754     | Optional |
| Line Cord, SSPA-500         | CA/6474     | Optional |
| M&C (RFT to SSPA)           | CA/6472     | Optional |
| 1/2" Heliax (TX)            | CA/1530     | Optional |
| 1/2" Heliax (RX)            | CA/3722     | Optional |

Table 8-1. Single Thread System

| Description            | EFData P/N  | QTY    | Note     |
|------------------------|-------------|--------|----------|
| RFT-500 (No HPA);      | RFT500      | 2      | Optional |
| Universal Mount Kit    | KT/3577     | 1      | Optional |
| LNA Plate Assembly     | .CSRED      | 1      | Optional |
| LNA Assembly, STD, CST | .CA         | 2      | Optional |
| Redundant SSPA-500:    | AS/6494     |        |          |
| 75W                    | RF/SSPA75C  | 2      | Optional |
| 100W                   | RF/SSPA100C | 2      | Optional |
| 125W                   | RF/SSPA125C | 2      | Optional |
| 150W                   | RF/SSPA150W | 2      | Optional |
|                        |             |        |          |
| Universal Mount Kit    | KT/6700     | 1      | Optional |
| Cable Accessories      |             |        |          |
| Waveguide Kit, C-Band  | KT/5115     | 1      | Optional |
| Line Cord, RFT-500     | CA/2754-    | 2      | Optional |
| Line Cord, SSPA-500    | CA/6474-    | 2      | Optional |
| M&C (RFT to SSPA)      | CA/6472-    | 2      | Optional |
| M&C (RSU to RFT)       | CA/3003-    | 2      | Optional |
| Switch 'Y'             | CA/3951-    | 1      | Optional |
| IF (RSU to RFT)        | CA/3005-1   | 4      | Optional |
| 1/2" Heliax (TX)       | CA/1530-    | 2 or 4 | Optional |
| 1/2" Heliax (RX)       | CA/3722-    | 2 or 4 | Optional |

 Table 8-2.
 Redundant System

# 8.2 Detail Equipment List

#### 8.2.1 LNA Connector Kit

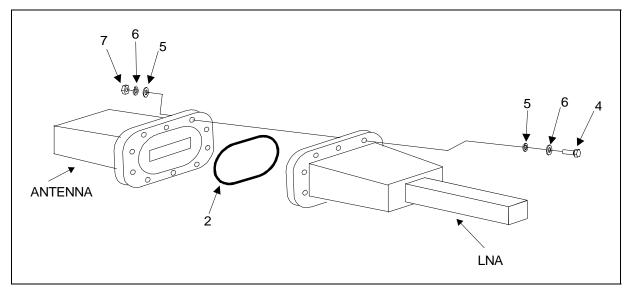



Figure 8-1. Exploded View of a Typical LNA Connector Kit

| Fig. &   |              |                                          |     |
|----------|--------------|------------------------------------------|-----|
| Item No. | Part No.     | 1234567 Nomenclature                     | Qty |
| 8-1 -1   | KT/2721      | Kit, LNA Connector                       | Ref |
| 2        | 32P1040      | . Gasket, Thick (Select at installation) | 1   |
| -3       | 32D1002      | . Gasket, Thin (Select at installation)  | 1   |
| 4        | 03P1079      | . Bolt, 1/4-20 x 1"                      | 10  |
| 5        | 04P1022      | . Washer, Flat                           | 20  |
| 6        | HW/1/4-SPLIT | . Washer, Spit Lock                      | 20  |
| 7        | HW/1/4HEXNUT | . Nut, 1/4-20                            | 10  |

-Item Not Illustrated

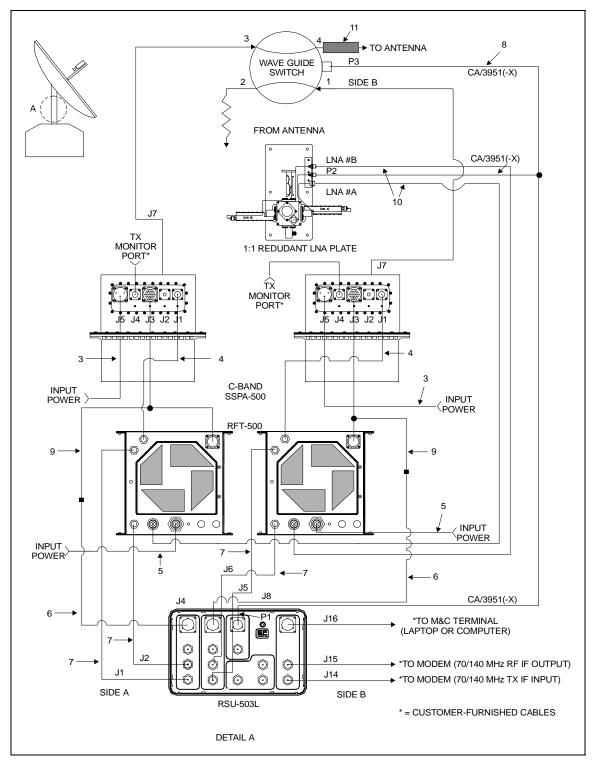



Figure 8-2. 1:1 Redundant Configuration Cabling

### 8.2.2 Cable Kit

| Fig. &<br>Item No. | Part No.     | 1234567 Nomenclature                             | Qty |
|--------------------|--------------|--------------------------------------------------|-----|
| 8-2 -1             | 3272-1       | Cable Kit, AC                                    | Ref |
| -1A                | 3272-2       | Cable Kit, DC                                    | Ref |
| -2                 | CN/STPG26M01 | . Connector Kit                                  | 1   |
| 3                  | PL/6474-1    | . Cable, AC Prime Power, (SSPA)                  | AR  |
|                    |              | $15.0 \pm 0.6$ ft (Select at order entry)        |     |
| -3A                | PL/6474-2    | . Cable, AC Prime Power, (SSPA)                  | AR  |
|                    |              | $30.0 \pm 1.0$ ft (Select at order entry)        |     |
| 4                  | CA/1530      | . Cable Assy, .50 Heliax $17.0 \pm 1.0$ ft       | AR  |
|                    |              | (Select at order entry)                          |     |
| -4A                | CA/1530-1    | . Cable Assy, .50 Heliax, $4.0 \pm 0.15$ ft      | AR  |
|                    |              | (See CA/3722-1 for ALT part)                     |     |
|                    |              | (Select at order entry)                          |     |
| -4B                | CA/1530-2    | . Cable Assy, .50 Heliax, $5.0 \pm 0.2$ ft       | AR  |
|                    |              | (See CA/3722-2 for ALT part)                     |     |
|                    |              | (Select at order entry)                          |     |
| -4C                | CA/1530-3    | . Cable Assy, .50 Heliax, $8.0 \pm 0.3$ ft       | AR  |
|                    |              | (Select at order entry)                          |     |
| -4D                | CA/1530-4    | . Cable Assy, .50 Heliax, $12.0\pm0.4~{\rm ft}$  | AR  |
|                    |              | (See CA/3722 for ALT part)                       |     |
|                    |              | (Select at order entry)                          |     |
| -4E                | CA/1530-5    | . Cable Assy, .50 Heliax, $16 \pm 0.6$ ft        | AR  |
|                    |              | (Select at order entry)                          |     |
| -4F                | CA/1530-6    | . Cable Assy, .50 Heliax, $20.0\pm0.7~{\rm ft}$  | AR  |
|                    |              | (See CA/3722-7 for ALT part)                     |     |
|                    |              | (Select at order entry)                          |     |
| -4G                | CA/1530-7    | . Cable Assy, .50 Heliax, 24.0 $\pm$ 0.9 ft      | AR  |
|                    |              | (See CA/3722 -5 for ALT part)                    |     |
|                    |              | (Select at order entry)                          |     |
| 5                  | CA/2754      | . Cable Assy, AC Input, $15.0 \pm 0.3$ ft        | 2   |
| 6                  | CA/3003      | . Cable Assy, Redundancy , $4.0\pm0.15~{\rm ft}$ | 2   |
| 7                  | CA/3005      | . Cable Assy, TNC-to-TNC, 50Ω,                   | AR  |
|                    |              | $4.0 \pm 0.1$ ft (Select at order entry)         |     |
| -7A                | CA/3005-1    | . Cable Assy, TNC-to-TNC, 50Ω,                   | AR  |
|                    |              | $1.5 \pm 0.1$ ft (Select at order entry)         |     |

- Item Not Illustrated

| Fig. &<br>Item No. | Part No.   | 1234567 Nomenclature                       | Qty |
|--------------------|------------|--------------------------------------------|-----|
| 8-2 8              | CA/3951    | Cable Assy, "Y" to Waveguide Switches      | AR  |
|                    |            | P1 to P2: $12.0 \pm 0.6$ ft                |     |
|                    |            | P1 to P3: $4.0 \pm 0.6$ ft                 |     |
|                    |            | (Select at order entry)                    |     |
| -8A                | CA/3951-1  | . Cable Assy, "Y" to Waveguide Switches    | AR  |
|                    |            | P1 to P2: 15.0 $\pm 0.6$ ft                |     |
|                    |            | P1 to P3: 15.0 $\pm 0.6$ ft                |     |
|                    |            | (Select at order entry)                    |     |
| -8B                | CA/3951-2  | . Cable Assy, "Y" to Waveguide Switches    | AR  |
|                    |            | P1 to P2: $35.0 \pm 0.6$ ft                |     |
|                    |            | P1 to P3: $5.0 \pm 0.2$ ft                 |     |
|                    |            | (Select at order entry)                    |     |
| -8C                | CA/3951-3  | . Cable Assy, "Y" to Waveguide Switches    | AR  |
|                    |            | P1 to P2: $20 \pm 0.6$ ft                  |     |
|                    |            | P1 to P2: $20 \pm 0.6$ ft                  |     |
|                    |            | (Select at order entry)                    |     |
| 9                  | CA/6472-5  | . Cable Assy, RFT-SSPA M&C Harness         | AR  |
|                    |            | $5.0 \pm 0.2$ ft (Select at order entry)   |     |
| -9A                | CA/6472-8  | . Cable Assy, RFT-SSPA M&C Harness         | AR  |
|                    |            | $8.0 \pm 0.3$ ft (Select at order entry)   |     |
| -9B                | CA/6472-12 | . Cable Assy, RFT-SSPA M&C Harness         | AR  |
|                    |            | $12.0 \pm 0.6$ ft (Select at order entry)  |     |
| -9C                | CA/6472-16 | . Cable Assy, RFT-SSPA M&C Harness         | AR  |
|                    |            | $16.0 \pm 1.0$ ft (Select at order entry)  |     |
| -9D                | CA/6472-20 | . Cable Assy, RFT-SSPA M&C Harness         | AR  |
|                    |            | $20.0 \pm 1.0$ ft (Select at order entry)  |     |
| -9E                | CA/6472-24 | . Cable Assy, RFT-SSPA M&C Harness         | AR  |
|                    |            | $24.0 \pm 1.0$ ft (Select at order entry)  |     |
| 10                 | CA/3722    | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $12.0 \pm 0.4$ ft (Select at order entry)  |     |
| -10A               | CA/3722-1  | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $4.0 \pm 0.15$ ft (Select at order entry)  |     |
| -10B               | CA/3722-2  | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $5.0 \pm 0.2$ ft (Select at order entry)   |     |
| -10C               | CA/3722-3  | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $7.5.0 \pm 0.2$ ft (Select at order entry) |     |
| -10D               | CA/3722-4  | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $22.0 \pm 0.4$ ft (Select at order entry)  |     |
| -10E               | CA/3722-5  | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $24.0 \pm 0.4$ ft (Select at order entry)  |     |
| -10F               | CA/3722-6  | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $6.0 \pm 0.2$ ft (Select at order entry)   |     |
| -10G               | CA/3722-7  | . Cable Assy, 1/4" Heliax Coax             | AR  |
|                    |            | $20.0 \pm 4.0$ (Select at order entry)     |     |
| 11                 | KT/5115    | Kit, Flexible Wave Guide 5.0 ft            | 1   |
|                    |            | (Optional)                                 |     |

- Item Not Illustrated

This page is intentionally left blank.

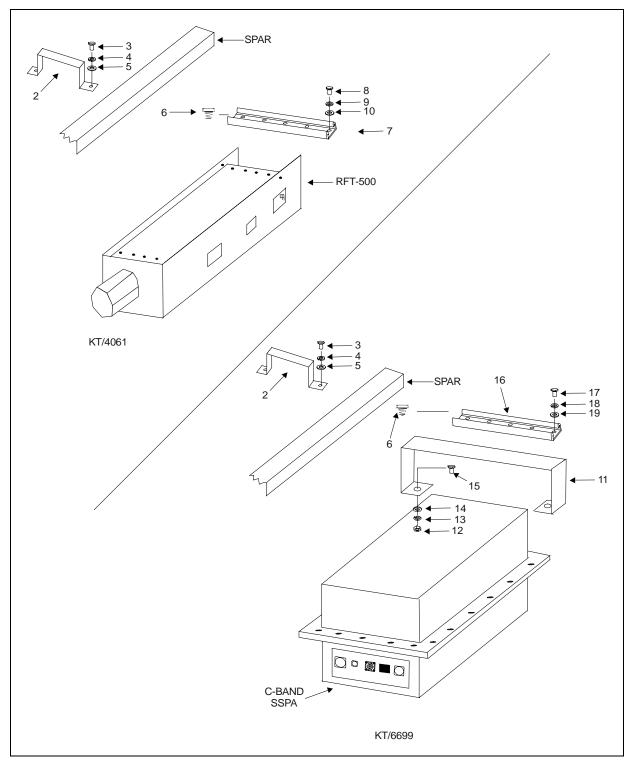



Figure 8-3. Exploded View of Spar Mounting Kit (Single Thread Configuration)

# 8.2.3 Spar Mounting Kit

| Fig. &<br>Item No. | Part No.            | 1234567 Nomenclature                            | Qty |
|--------------------|---------------------|-------------------------------------------------|-----|
| 8-3 -1             | KT/4061             | Kit, Spar Mounting, Single Thread Configuration | Ref |
| -1A                | KT/6699             | Kit, Spar Mounting, Single Thread Configuration | Ref |
| 2                  | FP/3175             | . Bracket, Spar                                 | 4   |
| 3                  | HW/5/16-18 x 1BLT   | . Bolt, 5/16-18 x 1 Hex Head (AP)               | 8   |
| 4                  | HW/5/16-SPLIT       | . Washer, Split (AP)                            | 8   |
| 5                  | HW/5/16-FLT         | . Washer, Flat (AP)                             | 8   |
| 6                  | HW/5/16-18SPNUT     | . Nut, Spring (AP)                              | 8   |
| 7                  | FP/3481             | . Unistrut, 8"-Long                             | 2   |
| 8                  | HW/1/4-20 x 5/8 BLT | . Bolt, 1/4-20 x 5/8 (AP)                       | 8   |
| 9                  | HW/1/4-SPLIT        | . Washer, Split Lock (AP)                       | 8   |
| 10                 | HW1/4-FLT           | . Washer, Flat (AP)                             | 8   |
| 11                 | FP/6487-1           | . Bracket, Mounting                             | 2   |
| 12                 | HW/3/8-16 x 1.25B   | . Bolt, 3/8 x 1 1/4 (AP)                        | 4   |
| 13                 | HW/3/8-SPLIT        | . Washer, Split (AP)                            | 8   |
| 14                 | HW/3/8-FLT          | . Washer, Flat (AP)                             | 8   |
| 15                 | HW/3/8-16-HEXNUT    | . Nut, Hex                                      | 8   |
| 16                 | FP/3595             | . Unistrut, 14"-Long                            | 2   |
| 17                 | HW/3/8-16-1 BLT     | . Bolt, 3/8 x 1 (AP)                            | 4   |
| 18                 | HW/3/8-SPLIT        | . Washer, Split Lock (AP)                       | 4   |
| 19                 | HW/3/8-FLT          | . Washer, Flat (AP)                             | 4   |

- Item Not Illustrated

AP = Attaching Parts

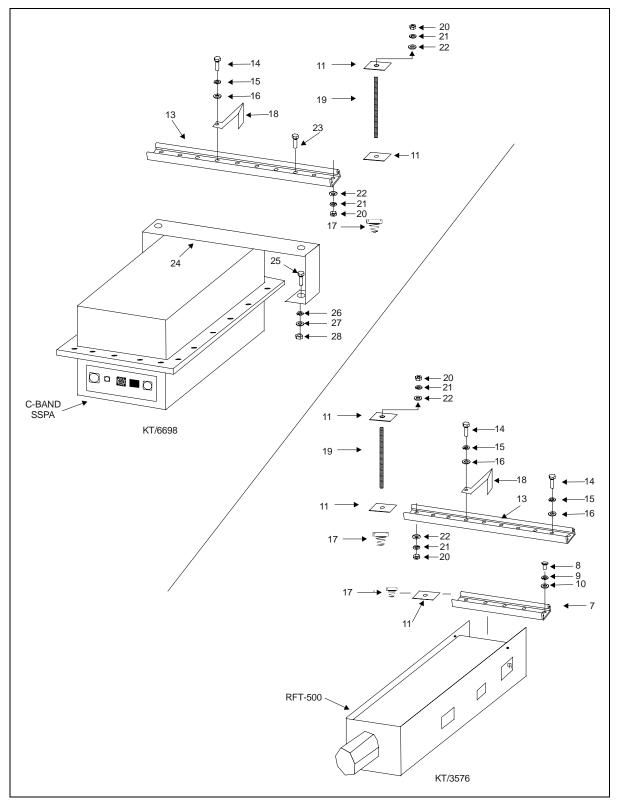



Figure 8-4. Exploded View of Universal Mounting Kit

# 8.2.4 Universal Mounting Kit

| Fig. &   |                   |                                            |     |
|----------|-------------------|--------------------------------------------|-----|
| Item No. | Part No.          | 1234567 Nomenclature                       | Qty |
| 8-4 -1   | KT/3576           | Kit, Universal Mounting                    | Ref |
| -1A      | KT/6698           | Kit, Universal Mounting                    | Ref |
| -2       | FP/3175           | . Bracket, Spar Mounting (See Figure 8-3)  | 4   |
| -3       | HW/5/16-18 x 1BLT | . Bolt, 5/16-18 x 1" (AP)                  | 8   |
| -4       | HW/5/16-SPLIT     | . Washer, Split Lock (AP)                  | 8   |
| -5       | HW/5/16-FLT       | . Washer, Flat (AP)                        | 8   |
| -6       | HW/5/16-18SPNUT   | . Nut, Spring (AP)                         | 8   |
| 7        | FP/3481           | . Unistrut, 8"-Long                        | 4   |
| 8        | HW/1/4-20 x 5/8BT | . Bolt, 1/4-20 x 5/8" (AP)                 | 8   |
| 9        | HW/1/4-SPLIT      | . Washer, Split Lock (AP)                  | 8   |
| 10       | HW/1/4-FLT        | . Washer, Flat (AP)                        | 8   |
| 11       | HW/FIT-PLT-5/16   | . Plate, Flat Fitting                      | 16  |
| 12       | HW/5/16-18SPNUT   | . Nut, Spring Nut                          | 32  |
| 13       | FP3595            | . Unistrut, 14"-Long                       | 8   |
| 14       | HW/5/16-18 x 1BLT | . Bolt, 5/16-18-1" (AP)                    | 24  |
| 15       | HW/5/16-SPLIT     | . Washer, Split Lock (AP)                  | 36  |
| 16       | HW/5/16-FLT       | . Washer, Flat (AP)                        | 36  |
| 17       | HW/5/16-18SPNUT   | . Nut, Spring (AP)                         | 8   |
| 18       | HW/BLK-PIPE2-8    | . Block, Pipe, 2-8 inch, 1 5/8 UNI Channel | 16  |
| 19       | HW/RD5/16-18 x 14 | . Rod, Threaded, 5/16-18 x 14"             | 8   |
| 20       | HW/5/16-18HEXNT   | . Nut, Hex, 5/16-18                        | 24  |
| 21       | HW/5/16-SPLIT     | . Washer, Split Lock                       | 12  |
| 22       | HW/5/16-FLT       | . Washer, Flat                             | 12  |
| 23       | HW/3/8-16 x 1 BLT | . Bolt, 3/8 x 1"                           | 4   |
| 24       | FP/6487-1         | . Bracket, Mounting, Single Thread         | 1   |
| 25       | HW/3/8-16 x 1.25B | . Bolt, 3/8 x 1 1/4" (AP)                  | 4   |
| 26       | HW/3/8-SPLIT      | . Washer, Split Lock (AP)                  | 8   |
| 27       | HW/3/8-FLT        | . Washer, Flat (AP)                        | 8   |
| 28       | HW/3/8-16HEXNUT   | . Nut, Hex, 3/8-16 (AP)                    | 4   |

-Item Not Illustrated

AP = Attaching Parts

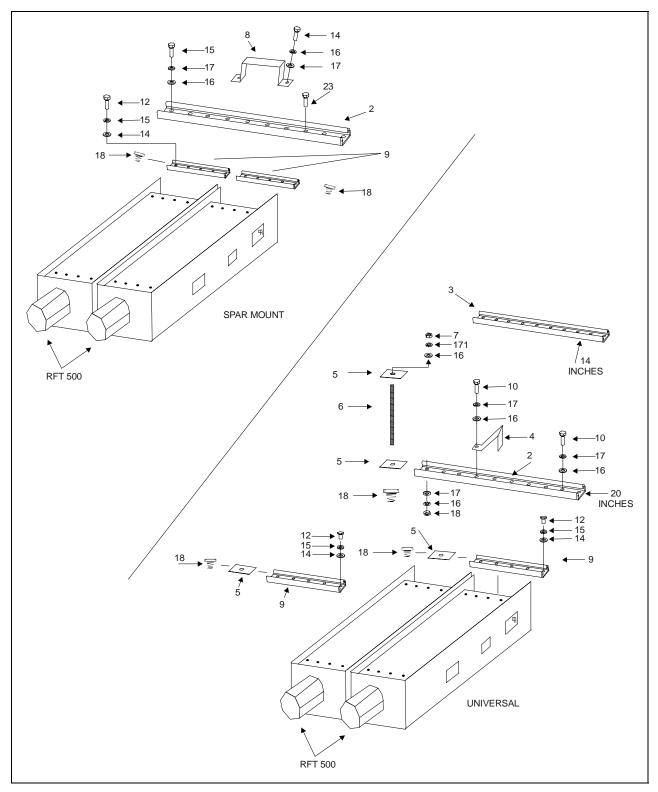



Figure 8-5. 1:1 Redundant System Universal Mounting Kit/3577

| Fig. &   |                 |                                                 |     |
|----------|-----------------|-------------------------------------------------|-----|
| Item No. | Part No.        | 1234567 Nomenclature                            | Qty |
| 8-5 -1   | KT/3577         | Kit, Universal, MTG, 1:1 Redundant System       | Ref |
| 2        | FP/3482         | . Unistrut, 20-inch long                        | 2   |
| 3        | FP/3595         | . Unistrut, 14-inch long                        | 2   |
| 4        | HW/BLK-PIPE2-8  | . Pipe Blocks, 2-8 inch, 1 5/8 unistrut channel | 12  |
| 5        | HW/FIT-PLT-5/16 | . Plate, Flat Fitting 5/16 X 18                 | 12  |
| 6        | HW/RDS/16-18X14 | . Rod, Threaded , 5/16-18 x 14                  | 6   |
| 7        | HW/5/16-18HEXNT | . Nut, Hex 5/16-18                              | 12  |
| 8        | FP/31756        | . Bracket, Support, 1 x 2 Spar                  | 8   |
| 9        | FP/3481         | . Unistrut, 8-inch long, Prodlin Spar           | 4   |
| 10       | HW5/16-18XBLT   | . Bolt, 5/16-18 x 1                             | 28  |
| -11      | Not Used        |                                                 |     |
| 12       | HW/1/4-20X5/8BT | . Bolt, 1/4-20 x 5/8                            | 19  |
| -13      | Not Used        |                                                 |     |
| 14       | HW/1/4-FLT      | . Washer, Flat, 1/4-inch                        | 19  |
| 15       | HW-1/4-SPLIT    | . Washer, Split Lock, 1/4-inch                  | 19  |
| 16       | HW/5/16-FLT     | . Washer, Flat, 5/16-18                         | 42  |
| 17       | HW/5/16-SPLIT   | . Washer, Split Lock, 5/16                      | 42  |
| 18       | HW/5/16-18SPNUT | . Nut, Spring, 5/16-18                          | 30  |

- Item Not Illustrated

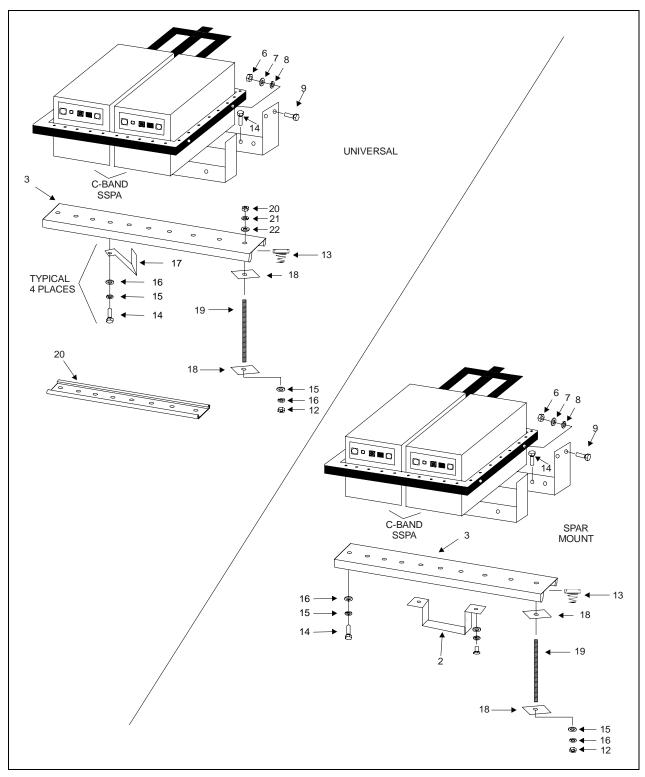



Figure 8-6. 1:1 Redundant System Universal Mounting Kit (KT/6700)

| Fig. &   |                 |                                          |     |
|----------|-----------------|------------------------------------------|-----|
| Item No. | Part No.        | 1234567 Nomenclature                     | Qty |
| 8-6 -1   | KT-6700         | Kit, Redundant, Universal Mounting, SSPA | REF |
| 2        | FP/3175         | . Bracket, Support, 1 x 2 Spar           | 2   |
| 3        | FP/3482         | . Unistrut, 20-inch long                 | 2   |
| 4        | FP/6488-1       | . Bracket, Mounting, Redundant           | 1   |
| 5        | FP/6488-2       | . Bracket, Mounting, Redundant           | 1   |
| 6        | HW/1/2-13HEXNUT | . Nut, Hex,                              | 6   |
| 7        | HW/1/2-FLT      | . Washer, Flat.                          | 6   |
| 8        | HW/1/2-SPLIT    | . Washer, Split Lock,                    | 6   |
| 9        | HW/3/8-16x3/4B  | . Bolt, Hex Head,                        | 12  |
| 10       | HW/3/8-FLT      | . Washer, Flat,                          | 12  |
| 11       | HW/3/8-SPLIT    | . Washer, Split Lock                     | 12  |
| 12       | HW/5/16-18HEXNT | . Nut, Hex, 5/16-18                      | 12  |
| 13       | HW/5/16-18SPNUT | . Nut, Spring                            | 8   |
| 14       | HW/5/16-18X1BLT | . Bolt, , Hex Head                       | 8   |
| 15       | HW/5/16-FLT     | . Washer, Flat                           | 20  |
| 16       | HW/5/16-SPLIT   | . Washer, Split Lock                     | 20  |
| 17       | HW/BLK-PIPE2-8  | . Pipe, Blocks                           | 8   |
| 18       | HW/FIT-PLT-5/16 | . Plate, Fitting Plate                   | 8   |
| 19       | HW/RDS/16-18X14 | . Rod, Threaded                          | 4   |
| 20       | FP/3595         | . Unistrut, 14-inch long                 | 2   |

- Item Not Illustrated

This page is intentionally left blank.

# Appendix A. CONFIGURATIONS

This appendix describes the 140 MHz IF configuration.

#### A.1 140 MHz Configuration

This section describes the 140 MHz IF configuration, which enables the user to double the available band width. Specifically, instead of the standard 70  $\pm$  18 MHz IF, this configuration allows a 140  $\pm$  36 MHz IF.

#### A.1.1 IF 1112.5 MHz Local Oscillator

The IF Local Oscillator (IFLO) contains:

- Voltage-Controlled Oscillator (VCO)
- Loop filter
- Divide-down chain

The IFLO provides a fixed frequency of 1112.5 MHz to both the up and down converters. The loop tracking voltage is sent to the M&C board, where it is monitored along with the lock detect fault.

Refer to Figure A-1 for a block diagram of the 1112.5 MHz IFLO.

# A.1.1.1 Specifications

Refer to Table A-1 for specifications.

| ] | Table A-1. IF 1112.5 MHz Local Oscillator Specification |                |  |
|---|---------------------------------------------------------|----------------|--|
|   | Parameter                                               | Specifications |  |
|   |                                                         |                |  |

| Specifications                    |
|-----------------------------------|
| 10.0 MHz Square Wave, CMOS levels |
| 1112.5 MHz (2 each)               |
| 2225.0 MHz (2 each)               |
| SMA, female                       |
| 50Ω                               |
| +7.0 dBm                          |
|                                   |

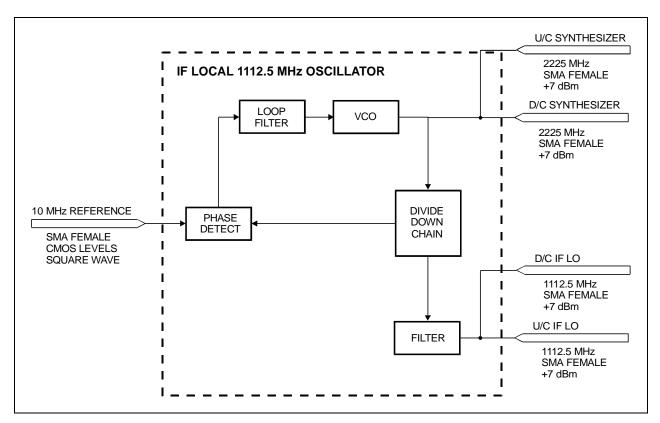



Figure A-1. IF Local Oscillator Block Diagram

#### A.1.2 Synthesizer

The 140 MHz IF terminal requires two synthesizers:

- One for the down converter to convert the RF input to 140 MHz output
- One for the up converter to convert 140 MHz input to the RF output

The purpose of the synthesizer module is to convert the 10 MHz reference signal to a variable frequency to perform the conversion.

#### A.1.2.1 Specifications

Refer to Table A-2 for specifications.

| Parameter      | Specifications                   |
|----------------|----------------------------------|
| RF Inputs      | 10 MHz CMOS square wave          |
| Connector type | SMA                              |
| Impedance      | 50Ω                              |
| Input level    | +7 dBm                           |
| RF Outputs     | Frequencies 4592.5 to 5172.5 MHz |
| Connector type | SMA                              |
| Impedance      | 50Ω                              |
| Level          | +7 dBm                           |

 Table A-2.
 Synthesizer Specifications

#### A.1.2.2 Theory of Operation

The synthesizer module multiplies the 10 MHz reference clock to a variable clock by use of a VCO, loop filter, phase detector, and a variable divide-down chain. The divide-down chain is controlled by the M&C board through the use of three serial signals. A frequency tripler is then applied to produce the final output.

The VCO tuning voltage is sent to the M&C for monitoring, as well as a lock detect fault.

Refer to Figure A-2 for a block diagram of the LO synthesizer. Refer to Figure A-3 for a block diagram of the U/C LO synthesizer.

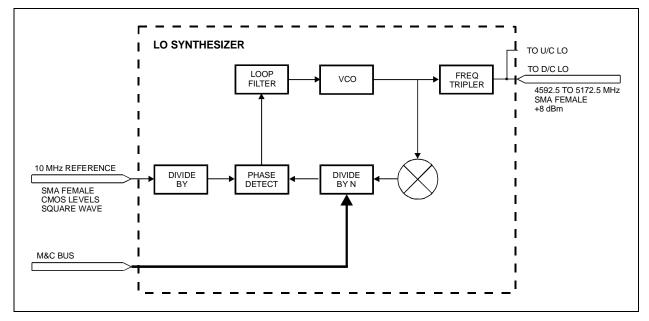



Figure A-2. LO Synthesizer Block Diagram

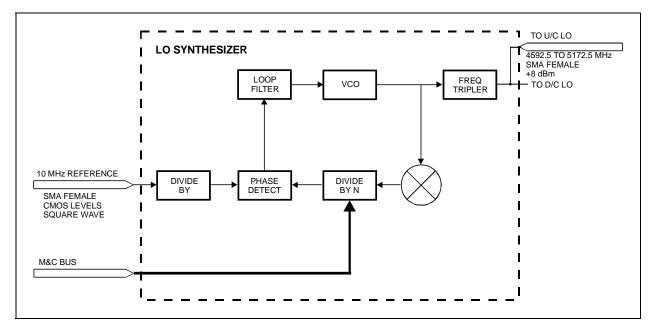



Figure A-3. U/C LO Synthesizer Block Diagram

#### A.1.3 Down Converter

The function of the down converter is to convert the C-Band signal from the LNA to a 140 MHz IF signal for use in the modem.

Refer to Figure A-4 for a functional block diagram of the down converter.

### A.1.3.1 Specifications

Refer to Table A-3 for specifications.

| Down Converter            |                       |  |
|---------------------------|-----------------------|--|
| Input Frequency           | 3620.0 to 4200.0 MHz  |  |
| Input Connector           | SMA Female            |  |
| Input Impedance           | 50Ω                   |  |
| Input VSWR                | 1:5:1                 |  |
| Output Frequency          | 140.0 MHz, ± 36.0 MHz |  |
| Output Connector          | SMA Female            |  |
| Output VSWR               | 1:3:1                 |  |
| 1.0 dB Compression        | +17 dBm               |  |
| IF Synthesizer Input      |                       |  |
| Frequency                 | 4592.5 to 5172.5 MHz  |  |
| Level                     | +8.0 dBm              |  |
| Connector                 | SMA Female            |  |
| Return Loss               | 14.0 dB               |  |
| Impedance                 | 50Ω                   |  |
| IF Local Oscillator Input |                       |  |
| Frequency                 | 1112.5 MHz            |  |
| Level                     | +8.0 dBm              |  |
| Connector                 | SMA Female            |  |
| Return Loss               | 14.0 dB               |  |
| Impedance                 | 50Ω                   |  |

#### **Table A-3. Down Converter Specifications**

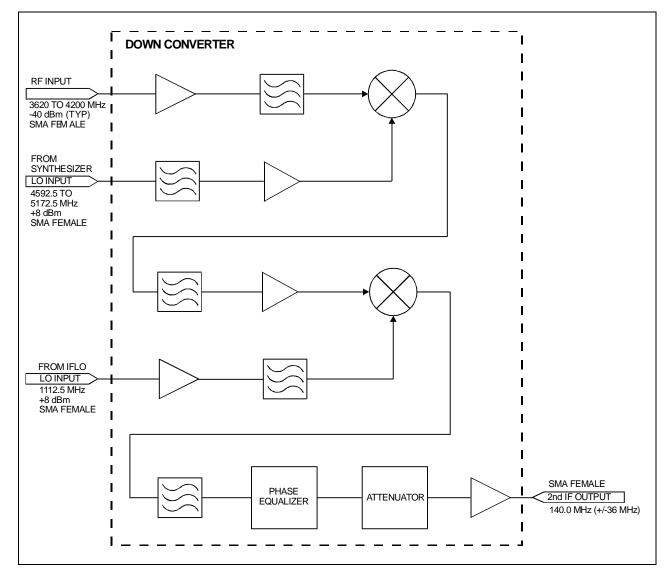



Figure A-4. Down Converter Block Diagram

#### A.1.3.2 Theory of Operation

The RFT-500 down converter utilizes a dual conversion process to convert from an input frequency band of 3620 to 4200 MHz, to an output baseband 140 MHz IF signal.

The first conversion requires a synthesizer frequency input to mix with the RF input. The M&C board controls the frequency selection of the synthesizer. The synthesizer output frequency band is 4592.5 to 5172.5 MHz, in 2.5 MHz steps.

The output of the first mixing process is at a frequency of 972.5 MHz. The 972.5 MHz is applied to the second mixer, which mixes with an IFLO frequency input at 1112.5 MHz from the IFLO module.

The output of the second mixer is the desired baseband 140 MHz IF signal.

The M&C board interpolates the factory present compensation data that is stored in an EEPROM inside the down converter. This data allows the M&C board to command and compensate the down converter's output power, ensuring proper output levels over the entire frequency and temperature range. The M&C board also supplies the DC power for the LNA, which is subsequently injected into the RF input connector.

#### A.1.4 Up Converter

The function of the up converter is to convert the 140 MHz IF signal used in the indoor unit modem to a C-Band signal sent to the HPA.

Refer to Figure A-5 for a functional block diagram of the up converter.

# A.1.4.1 Specifications

Refer to Table A-4 for specifications.

| Down Converter            |                      |  |
|---------------------------|----------------------|--|
| Input Frequency           | 140.0 MHz, ± 36 MHz  |  |
| Input Connector           | SMA Female           |  |
| Input Impedance           | 50Ω                  |  |
| Input VSWR                | 1:3:1                |  |
| Output Frequency          | 5845.0 to 6425.0 MHz |  |
| Output Connector          | SMA Female           |  |
| Output VSWR               | 1:5:1                |  |
| 1.0 dB Compression        | +10.0 dBm            |  |
| RF Local Oscillator Input |                      |  |
| Frequency                 | 1112.5 MHz           |  |
| Level                     | +8.0 dBm             |  |
| Connector                 | SMA Female           |  |
| Return Loss               | 14.0 dB              |  |
| Impedance                 | 50Ω                  |  |
| RF Synthesizer Input      |                      |  |
| Frequency                 | 4592.5 to 5172.5 MHz |  |
| Level                     | +8.0 dBm             |  |
| Connector                 | SMA Female           |  |
| Return Loss               | 14.0 dB              |  |
| Impedance                 | 50Ω                  |  |

#### **Table A-4. Up Converter Specifications**

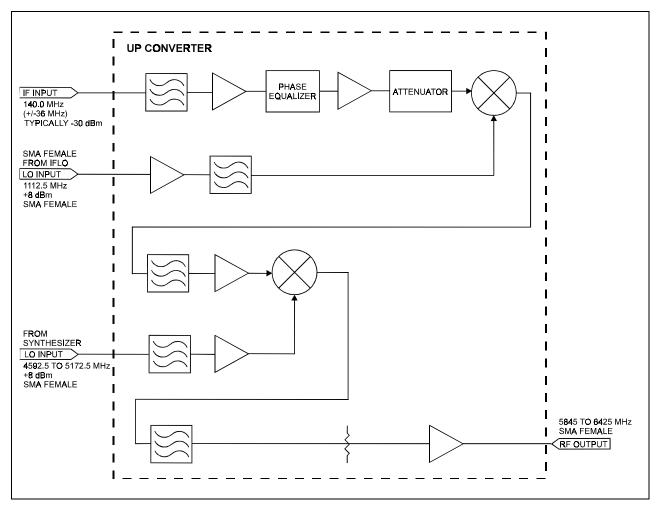



Figure A-5. Up Converter Block Diagram

#### A.1.4.2 Theory of Operation

The RF-500 up converter utilizes a dual conversion process to convert from a baseband 140 MHz IF signal to the output frequency band.

The first conversion requires an IFLO frequency at 1112.5 MHz from the IFLO module. The output of the first mixing process is at a frequency of 1252.5 MHz. The 1252.5 MHz output is applied to the second mixer which mixes the synthesizer frequency input. The M&C board controls the frequency selection of the synthesizer. The output frequency is from 4592.5 to 5172.5 MHz, in 2.5 MHz steps.

The output frequency of the second mixer is the desired RF frequency band of 5845 to 6425 MHz.

The M&C board interpolates the factory present compensation data that is stored in an EEPROM inside the up converter. This data allows the M&C board to command and compensate the up converter's output power, ensuring proper output levels over the entire frequency and temperature range.

The M&C also controls the up converter attenuator.

# Appendix B. REMOTE CONTROL OPERATION

This appendix describes the remote control operation of the RFT-500.

- Firmware number: FW/3059-8-
- Software version: 8.00

Operation of the RFT-500 terminal is normally done from a remote terminal. If you have ordered the optional keypad, operation at the keypad is described in Chapter 5.

#### B.1 General

Remote controls and status information are transferred via an EIA-485 (optional EIA-232C) serial communications link.

Commands and data are transferred on the remote control communications link as US ASCII-encoded character strings.

The remote communications link is operated in a half-duplex mode.

Communications on the remote link are initiated by a remote controller or terminal. The RFT-500 never transmits data on the link unless it is commanded to do so.

#### B.2 Message Structure

The ASCII character format used requires 11 bits/character:

- 1 start bit
- 7 information bits
- 1 parity bit
- 2 stop bits

Messages on the remote link fall into the categories of commands and responses.

Commands are messages which are transmitted to a satellite modern, while responses are messages returned by the RFT-500 in response to a command.

The general message structure is as follows:

- Start Character
- Device Address
- Command/Response
- End of Message Character

#### B.2.1 Start Character

A single character precedes all messages transmitted on the remote link. This character flags the start of a message. This character is:

- "<" for commands
- ">" for responses

#### B.2.2 Device Address

The device address is the address of the RFT-500 which is designated to receive a transmitted command, or which is responding to a command.

Valid device addresses are 1 to 3 characters long, and in the range of 1 to 255. Address 0 is reserved as a global address which simultaneously addresses all devices on a given communications link. Devices do not acknowledge global commands.

Each RFT-500 which is connected to a common remote communications link must be assigned its own unique address. Addresses are software selectable at the modem, and must be in the range of 1 to 255.

Note: Global address '\*' is reserved for EXTERNAL KEYPAD commands.

#### B.2.3 Command/Response

The command/response portion of the message contains a variable-length character sequence which conveys command and response data.

If the RFT-500 receives a message addressed to it which does not match the established protocol or cannot be implemented, a negative acknowledgment message is sent in response. This message is:

- >add/?ER1\_parity error'cr"lf'] (Error message for received parity errors.)
- >add/?ER2\_invalid parameter'cr''lf']

   (Error message for a recognized command which cannot be implemented or has parameters which are out of range.)
- >add/?ER3\_unrecognizable command'cr"lf'] (Error message for unrecognizable command or bad command syntax.)
- >add/?ER4\_modem in local mode'cr''lf'] (Modem in local error; send the REM command to go to remote mode.)
- >add/?ER5\_hard coded parameter'cr"lf']
   (Error message indicating that the parameter is hardware dependent and may not be changed remotely.)

**Note:** "add" is used to indicate a valid 1 to 3 character device address in the range between 1 and 255.

#### B.2.4 End Character

Each message is ended with a single character which signals the end of the message:

- "cr" Carriage return character for commands
- "]" End bracket for responses

#### B.3 Configuration Commands/Responses

| Up<br>Converter<br>Frequency<br>Select   | Command:<br>Response:<br>Status:<br>Response: | <add ucf_nnnn.nnn'cr'<br="">&gt;add/UCF_nnnn.nnn'cr'<br/>RF_OFF'cr"If']<br/><add ucf'cr'<br="">&gt;add/UCF_nnnn.nnn'cr"If']</add></add> | Where: nnnn.n = 5845.000 to 6425.000 MHz, in 125 kHz steps.                                                                                                                                                                                                                                                                                                             |
|------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Down<br>Converter<br>Frequency<br>Select | Command:<br>Response:<br>Status:<br>Response: | <add dcf_nnnn.nnn'cr'<br="">&gt;add/DCF_nnnn.nnn'cr''lf']<br/><add dcf'cr'<br="">&gt;add/DCF_nnnn.nnn'cr''lf']</add></add>              | Where: nnnn.n = 3620.000 to 4200.000 MHz, in 125 kHz steps.                                                                                                                                                                                                                                                                                                             |
| RF Output                                | Command:<br>Response:<br>Status:<br>Response: | <add rf_xxx'cr'<br="">&gt;add/RF_xxx'cr''lf']<br/><add rf_'cr'<br="">&gt;add/RF_xxx'cr''lf']</add></add>                                | Where: xxx = ON, WRM, or OFF.<br>The OFF command will keep the RF output turned off under all<br>conditions, the WRM command is a conditional ON command<br>telling the RF output to come on after the unit is warmed up<br>and meets the stability requirements, while the ON command<br>is an override instructing the output to be on and ignores the<br>warm start. |
| UP<br>Converter<br>Attenuator            | Command:<br>Response:<br>Status:<br>Response: | <add uca_nn.n'cr'<br="">&gt;add/UCA_nn.n'cr"lf']<br/><add uca_'cr'<br="">&gt;add/UCA_nn.n'cr"lf']</add></add>                           | Where: nn.n = 0.0 to 25.0 dB, in 1/2 dB steps.                                                                                                                                                                                                                                                                                                                          |
| Down<br>Converter<br>Attenuator          | Command:<br>Response:<br>Status:<br>Response: | <add dca_nn.n'cr'<br="">&gt;add/DCA_nn.n'cr"lf']<br/><add dca_'cr'<br="">&gt;add/DCA_nn.n'cr"lf']</add></add>                           | Where: nn.n = 0.0 to 21.0 dB, in 1/2 dB steps.                                                                                                                                                                                                                                                                                                                          |

| Select<br>Preset<br>Config.           | Command:<br>Response:<br>Status:              | <add sel_n'cr'<br="">&gt;add/SEL_n'cr''If']<br/><add sel_'cr'<="" th=""><th>Where: n = 1, 2, or 3.</th></add></add>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Where: n = 1, 2, or 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Response:                                     | <pre>&gt;add/SEL_'cr' 1 UCF_nnnn.nnn'cr' DCF_nnnn.nnn'cr' DCA_nn.n'cr' 2 UCF_nnnn.nnn'cr' DCF_nnnn.nnn'cr' UCA_nn.n'cr' DCA_nn.n'cr' 3 UCF_nnnn.nnn'cr' DCF_nnnn.nnn'cr' DCA_nn.n'cr' DCA_nn.n'cr''ICA_nn.n'cr'' DCA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr''ICA_nn.n'cr'''ICA_nn.n'cr'''ICA_nc_nc_nc_nc_nc_nc_nc_nc_nc_nc_nc_nc_nc_</pre> | 1<br>nnnn.nnn = 5845.000 to 6425.000 MHz.<br>nnnn = 3620.000 to 4200.000 MHz.<br>nn.n = 0.0 to 25.0 dB (UC Fine Adj).<br>2<br>nnnn.nnn = 5845.000 to 6425.000 MHz.<br>nnnn = 3620.000 to 4200.000 MHz.<br>nn.n = 0.0 to 25.0 dB (UC Fine Adj).<br>3<br>nnnn.nnn = 5845.000 to 6425.000 MHz.<br>nnnn = 5845.000 to 6425.000 MHz.<br>nnnn = 5845.000 to 6425.000 MHz.<br>nnnn = 3620.000 to 4200.000 MHz.<br>nn.n = 0.0 to 25.0 dB (UC Fine Adj).<br>3<br>Allows the user to select any one of three 'PreSet'<br>configurations. The users must first program (store) a<br>configuration using the PGM_n command defined below. This<br>command used without the 'PreSet' number (n) will provide the<br>current programming of each of the three 'PreSets'. |
| Program<br>Preset<br>Config.          | Command:<br>Response:<br>Status:<br>Response: | <add pgm_n'cr'<br="">&gt;add/PGM_n'cr''<br/>&gt;add/PGM_'cr'<br/>&gt;add/PGM_'cr'<br/>1 xxxxxxxxx'cr'<br/>2 xxxxxxxxx'cr'<br/>3 xxxxxxxxx'cr''lf']</add>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Where:<br>n = 1, 2, or 3.<br>xxxxxxxxx = 'Programmed' or 'None'.<br>Allows the user to store (program) the current frequency and<br>attentuator setting as one of three 'PreSet' selections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Clear<br>Program<br>Preset<br>Config. | Command:<br>Response:<br>Status:<br>Response: | <add cpgm_n'cr'<br="">&gt;add/CPGM_n'cr'<br/>add/CPGM_'cr'<br/>&gt;add/CPGM_'cr''lf']<br/>1 xxxxxxxxx'cr'<br/>2 xxxxxxxx'cr'<br/>3 xxxxxxxx'cr''lf']</add>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Where:<br>n = 1, 2, or 3.<br>xxxxxxxx = 'Programmed' or 'None'.<br>Allows the user to clear (unprogram) the frequency and<br>attentuator setting for one of three 'PreSet' selections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### B.4 System

| Lock Mode           | Command:              | <add lm_xx'cr'<="" th=""><th>Where: xx = LK (lock) or EN (enable) (Default = Enable).</th></add>                                                                    | Where: xx = LK (lock) or EN (enable) (Default = Enable).                                                                |
|---------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                     | Response:             | >add/LM_xx'cr''lf']                                                                                                                                                 | Lock mode prevents the current settings from being changed.                                                             |
|                     | Status:<br>Response:  | <add lm_'cr'<br="">&gt;add/LM_xx'cr''lf']</add>                                                                                                                     |                                                                                                                         |
| <b>F</b> IA 999     |                       | -                                                                                                                                                                   |                                                                                                                         |
| EIA232<br>Address   | Command:<br>Response: | <add as_xxx'cr'<br="">&gt;add/AS_xxx'cr''lf']</add>                                                                                                                 | Where:<br>add = Current address.                                                                                        |
| Select              | Status:               | <add as_'cr'<="" td=""><td>xxx = New address, 1 to 255 (Default address = 1).</td></add>                                                                            | xxx = New address, 1 to 255 (Default address = 1).                                                                      |
|                     | Response:             | >add/AS_xxX'cr"lf']                                                                                                                                                 |                                                                                                                         |
| EIA232              | Command:              | <add br_xxxx'cr'<="" td=""><td>Where: xxxx = 300 to 19200 (In standard settings of 300, 600,</td></add>                                                             | Where: xxxx = 300 to 19200 (In standard settings of 300, 600,                                                           |
| Baud Rate<br>Select | Response:             | >add/BR_xxxx'cr"lf']                                                                                                                                                | 1200, 2400, 800, 9600, and 19200 kbit/s) (Default value = 9600).                                                        |
| 00.000              | Status:               | <add br_'cr'<="" td=""><td></td></add>                                                                                                                              |                                                                                                                         |
|                     | Response:             | >add/BR_xxxx'cr"lf']                                                                                                                                                |                                                                                                                         |
| EIA232<br>Parity    | Command:<br>Response: | <add ps_xx'cr'<br="">&gt;add/PS_xx'cr''lf']</add>                                                                                                                   | Where: xx = OD (odd), EV(even), or NO (none - 8 bit) (Default value = EV (even)).                                       |
| Select              | Status:               | _                                                                                                                                                                   |                                                                                                                         |
|                     | Response:             | <add ps_'cr'<br="">&gt;add/PS_xx'cr''lf']</add>                                                                                                                     |                                                                                                                         |
| Reference           | Command:              | <add rfj_nnn'cr'<="" td=""><td>Where:</td></add>                                                                                                                    | Where:                                                                                                                  |
| Frequency<br>Adjust | Response:             | >add/RFJ_nnn'cr''lf']                                                                                                                                               | nnn = DAC setting from 0 to 255.<br>nnn = Current DAC setting.                                                          |
| Aujust              | Status:               | <add rfj_'cr'<="" td=""><td>hint – Ouron DAO setting.</td></add>                                                                                                    | hint – Ouron DAO setting.                                                                                               |
|                     | Response:             | >add/RFJ_nnn'cr"lf']                                                                                                                                                |                                                                                                                         |
| LNA<br>Calibration  | Command:<br>Response: | <add clna_'cr'<br="">&gt;add/CLNA_'cr''lf']</add>                                                                                                                   | Performs a current windowing calibration on the LNA.                                                                    |
| Cambration          | reepeneer             |                                                                                                                                                                     | Note: This is only done once during the initial installation.                                                           |
| LNA Fault           | Command:              | <add lfe_xxx'cr'<="" td=""><td>Where: xxx = ON or OFF (Default = ON, enable monitor).</td></add>                                                                    | Where: xxx = ON or OFF (Default = ON, enable monitor).                                                                  |
| Enable              | Response:             | >add/LFE_xxx'cr"lf']                                                                                                                                                |                                                                                                                         |
|                     | Status:<br>Response:  | <add lfe_'cr'<br="">&gt;add/LFE_xxx'cr''lf']</add>                                                                                                                  |                                                                                                                         |
|                     |                       | _                                                                                                                                                                   |                                                                                                                         |
| External<br>Fault   | Command:<br>Response: | <add xfe_xxx'cr'<br="">&gt;add/XFE_xxx'cr''lf']</add>                                                                                                               | Where: xxx = ON or OFF (Default = ON, enable monitor).                                                                  |
| Enable              | Status:               | <add 'cr'<="" td="" xfe=""><td></td></add>                                                                                                                          |                                                                                                                         |
|                     | Response:             | >add/XFE_xxx'cr"lf']                                                                                                                                                |                                                                                                                         |
| LNA Power           | Command:              | <add lpe_xxx'cr'<="" td=""><td>Where: xxx = ON or OFF (Default = ON, enable power).</td></add>                                                                      | Where: xxx = ON or OFF (Default = ON, enable power).                                                                    |
| Enable              | Response:             | >add/LPE_xxx'cr"lf']                                                                                                                                                |                                                                                                                         |
|                     | Status:<br>Response:  | <add lpe_'cr'<br="">&gt;add/LPE_xxx'cr''lf']</add>                                                                                                                  |                                                                                                                         |
|                     |                       |                                                                                                                                                                     |                                                                                                                         |
| Redundant<br>Switch | Command:<br>Response: | <add rsw_xxxxx'cr'<br="">&gt;add/RSW_xxxxx'cr''lf']</add>                                                                                                           | Where: xxxxx = INDEP or DEP (Default = INDEP).                                                                          |
| Mode                | Status:               | <br><add rsw_'cr'<="" td=""><td>Note: For use in redundant system only with RSU-503 switch.<br/>(INDEP TX and RX switch independently on fault to backup</td></add> | Note: For use in redundant system only with RSU-503 switch.<br>(INDEP TX and RX switch independently on fault to backup |
|                     | Response:             | >add/RSW_xxxx'cr"lf']                                                                                                                                               | terminal. DEP switches both TX and RX on fault to backup                                                                |
|                     |                       |                                                                                                                                                                     | terminal.)                                                                                                              |

#### B.5 Status Commands/Responses

| Config.<br>Status        | Command:<br>Response: | <add os_'cr'<br="">&gt;add/OS_'cr'<br/>UCF_nnnn.nnn'cr'<br/>DCF_nnnn.nnn'cr'<br/>RF_xxx'cr'<br/>DCA_nn.n'cr'<br/>UCA_nn.n'cr'<br/>SEL_n'cr''lf']</add>                                                                                                  | nnnn.nnn = 5845.000 to 6425.000 MHz.<br>nnnn.nnn = 3620.000 to 4200.000 MHz.<br>xxx = ON, WRM, or OFF.<br>nn.n = 0.0 to 21.0 dB (DC Fine Adj).<br>nn.n = 0.0 to 25.0 dB (UC Fine Adj).<br>n = 1, 2, 3, or NONE.<br>The converter configuration status command causes a block of<br>data to be returned by the addressed RFT-500. The block of<br>data reflects the current configuration status.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fault Status             | Command:<br>Response: | <add fs_'cr'<br="">&gt;add/FS_'cr'<br/>RST_xxx'cr'<br/>DL_xxx'cr'<br/>PS5_xxx'cr'<br/>P12_xxx'cr'<br/>HPA_xxx'cr'<br/>ULD_xxx'cr'<br/>ULD_xxx'cr'<br/>DLD_xxx'cr'<br/>DLD_xxx'cr'<br/>ILD_xxx'cr'<br/>ILD_xxx'cr'<br/>ITM_xxx'cr'<br/>ITM_xxx'cr'</add> | Unit Experienced a Restart (OK/FLT)<br>Uplink Fault (OK/FLT)<br>5V Power Supply (OK/FLT)<br>+12V Power Supply (OK/FLT)<br>Power Amp Fault (OK/FLT)<br>UC LO Lock Detect (OK/FLT)<br>UC LO Tuning Voltage Out of Range (OK/FLT)<br>DC LO Tuning Voltage Out of Range(OK/FLT)<br>IF LO Lock Detect (OK/FLT)<br>IF LO Lock Detect (OK/FLT)<br>IF LO Lock Detect (OK/FLT)<br>IF LO Tuning Voltage Out of Range(OK/FLT)<br>IF LO Tuning Voltage Out of Range(OK/FLT)<br>This command returns a block of data reflecting the current<br>and logged faults. Logged faults will be reset when receiving<br>this command while current faults can be read on the second<br>request. |
| Summary<br>Fault Status  | Command:<br>Response: | <add sf_'cr'<br="">&gt;add/SF_xxx'cr''lf']</add>                                                                                                                                                                                                        | Returns status of current faults only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Maintenanc<br>e Status   | Command:<br>Response: | <add ms_'cr'<br="">&gt;add/MS_'cr'<br/>UCT_nn'cr'<br/>DCT_nn'cr'<br/>HPT_nn'cr'<br/>TUV_nn.n'cr'<br/>TDV_nn.n'cr'<br/>TIV_nn.n'cr'If']</add>                                                                                                            | nn = UC temperature in deg C.<br>nn = DC temperature in deg C.<br>nn = Power Amp temp in deg C.<br>nn.n = Tuning voltage of UC LO.<br>nn.n = Tuning voltage of DC LO.<br>nn.n = Tuning voltage of IF LO.<br>This command returns a block of data from the RFT-500<br>reflecting the status of certain internal parameters for the<br>purpose of troubleshooting.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Equipment<br>Type Status | Command:<br>Response: | <add et_'cr'<br="">&gt;add/ET_xx'cr''lf']</add>                                                                                                                                                                                                         | Where: xx = RFT-500 SW_8.00.<br>This command returns the equipment type polled and software version.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

This page is intentionally left blank.



The following is a list of acronyms and abbreviations that may be found in this manual.

| Acronym/<br>Abbreviation | Definition                                         |  |  |
|--------------------------|----------------------------------------------------|--|--|
| Ω                        | Ohms                                               |  |  |
| 5V                       | Internal 5 VDC Power                               |  |  |
| А                        | Ampere                                             |  |  |
| AC                       | Alternating Current                                |  |  |
| AP                       | Attaching Parts                                    |  |  |
| AR                       | As Required                                        |  |  |
| ASA                      | Address Select Unit A                              |  |  |
| ASB                      | Address Select Unit B                              |  |  |
| ASCII                    | American Standard Code for Information Interchange |  |  |
| bit/s                    | bits per second                                    |  |  |
| С                        | Celsius                                            |  |  |
| CAL                      | Calibrate                                          |  |  |
| CLNA                     | Calibrated LNA                                     |  |  |
| CLR                      | CLEAR                                              |  |  |
| COMP                     | Compensation                                       |  |  |
| CR                       | Carriage Return                                    |  |  |
| D/C                      | Down Converter                                     |  |  |
| dB                       | Decibels                                           |  |  |
| dBc                      | Decibels referred to carrier                       |  |  |
| dBm                      | Decibels referred to 1.0 milliwatt                 |  |  |
| DC                       | Direct Current                                     |  |  |
| DCA                      | Down Converter Attenuation                         |  |  |
| DCF                      | Down Converter Frequency                           |  |  |
| DCT                      | Down Converter Temperature                         |  |  |
| DL                       | Down Link Fault                                    |  |  |
| DLA                      | Down Link Fault — Unit A                           |  |  |
| DLB                      | Down Link Fault — Unit B                           |  |  |
| DLD                      | Down Converter Lock Detect Fault                   |  |  |
| DLM                      | Down Link Mode (Auto or Manual)                    |  |  |
| DLS                      | Down Link Switch (A or B)                          |  |  |

| DTM    | Down Converter Tuning Voltage Fault                   |
|--------|-------------------------------------------------------|
| EIRP   | Equivalent Isotropically Radiated Power               |
| EIN    | Enable                                                |
| ERR    | Error                                                 |
| ESC    | Escape                                                |
| EXE    | Executable                                            |
| FLT    | Fault                                                 |
| G/T    | Gain Over Temperature                                 |
| GHz    | Gigahertz (10 <sup>9</sup> Hertz)                     |
| GND    | Ground                                                |
| HPA    | High Power Amplifier                                  |
| HPT    | HPA Temperature                                       |
| HPV    | HPA Internal 12 VDC Power                             |
| Hz     | Hertz (cycle per second)                              |
| IF     | Intermediate Frequency                                |
| IF TUN | Intermediate Frequency Tuning                         |
| ILD    | IF LO Lock Detect Fault                               |
| INI    | Initialize                                            |
| ITM    | IF LO Tuning Voltage Fault                            |
| k      | kilo (10 <sup>3</sup> )                               |
| ΚΩ     | kilo-ohms                                             |
| kbit/s | Kilobits per second (10 <sup>3</sup> bits per second) |
| kHz    | Kilohertz (10 <sup>3</sup> Hertz)                     |
| LCD    | Liquid Crystal Display                                |
| LFE    | LNA Fault Enable                                      |
| LK     | Lock                                                  |
| LNA    | Low Noise Amplifier                                   |
| LO     | Local Oscillator                                      |
| m      | Milli (10 <sup>-3</sup> )                             |
| M&C    | Monitor and Control                                   |
| mA     | Milliampere                                           |
| Max    | Maximum                                               |
| Mbit/s | Megabits per second                                   |
| MHz    | Megahertz (10 <sup>6</sup> Hertz)                     |
| Min    | Minimum or Minute                                     |
| ns     | Nanosecond (10-9 second)                              |
| P-P    | Peak-to-Peak                                          |
| P05    | Internal 5 VDC Power Fault                            |
| PCB    | Printed Circuit Board                                 |
| PLO    | Phase Locked Oscillator                               |
| PROG   | Program                                               |
| PS     | Power Supply                                          |
| PSIG   | Pressure per Square Inch Gauge                        |
| RAM    | Random Access Memory                                  |
| REF    | Reference                                             |
| RF     | Radio Frequency                                       |
| RFJ    | Reference Frequency Adjust (10 MHz)                   |
| RFT    | Radio Frequency Terminal                              |
| RH     | Relative Humidity                                     |
| RMA    | Return Material Authorization                         |
| RST    | Restart Fault                                         |
| RSU    | Redundancy Switch Unit                                |
| RX     | Receive (Receiver)                                    |
| SEL    | Select                                                |
| SSPA   | Solid State Power Amplifier                           |
| 55171  |                                                       |

| TIV     | IF LO Tuning Voltage              |
|---------|-----------------------------------|
| TRF     | Transmit Reject Filter            |
| TUV     | Up Converter Tuning Voltage       |
| TWT     | Traveling Wave Tube               |
| TX      | Transmit (Transmitter)            |
| U/C     | Up Converter                      |
| U/C TUN | Up Converter Tuning               |
| UCA     | UP Converter Attenuation          |
| UCF     | Up Converter Frequency            |
| UCT     | Up Converter Temperature          |
| UL      | Up Link Fault                     |
| ULA     | Up Link Fault — Unit A            |
| ULB     | Up Link Fault — Unit B            |
| ULD     | Up Converter Lock Detect Fault    |
| ULM     | Up Link Mode (Auto or Manual)     |
| ULS     | Up Link Switch (A or B)           |
| UTM     | Up Converter Tuning Voltage Fault |
| V       | Volts                             |
| VAC     | Volts, Alternating Current        |
| VDC     | Volts, Direct Current             |
| VSAT    | Very Small Aperture Terminal      |
| VSWR    | Voltage Standing Wave Ration      |
| W       | Watt                              |
| WRM     | Warm                              |
| XFE     | External Fault Enable             |
| XVA     | External Input Power from Unit A  |
| XVB     | External Input Power from Unit B  |

This page is intentionally left blank.

### Index

1:1 Redundant LNA Plate, 4-22 1:1 Redundant Plate Installation, 1-8, 1-11 -A-140 MHz Configuration, 1-8, 1-11, 4-19 Alarm/Interface Board, A-1 Applications, 2–10 -C-Cable Kit, 1–3 C-Band Solid-State Power Amplifier (SSPA), 8-5 C-Band SSPA External Connections, 8-5 C-Band SSPA Specification, 3-18 Component Descriptions, B-2, B-3 Configuration, 1–11 Configuration Commands/Responses, 1-5, 1-6, 1-9, 1-11, 1-20, 1-27, 1-28, 3-1, 3-2, 3-7, 3-18, 4-29, 4-30, 5-2, 5-3, 5-5, 5-6, 8-4, 8-8, 8-9, A-1, B-4 -D-Description, B-4 Detail Equipment List, 1-1, 1-2, 1-6, 1-8, 1-15, 1-16, 2-5, 3-4, 3-6, 4-5, 4-7, 5-3, 5-7, 5-9, 5-13, 6-6, 6-7, 6-8, 6-9, 7-1, 7-2, 8-1, 8-2 Device Address, 8-3 Dimensional Drawings, 6-4, B-2 Discrete Interface (J3), 1-25 Down Converter, 2-8 -E-EEPROM Memory, 6-15, 6-16, 6-17, A-5, A-6, A-8, B-4 EIA-232/EIA-485 Remote Control (J1), 6-3 Equipment List, B-3 External Connections, 3-4, 3-7, 3-14, 3-18, 3-26, 4-4, 4-8, 4-22, 8-1, 8-3 -F-Fault Isolation, 2-1, 2-2, 2-7 Faults, 7-2, 7-3, 7-4 Front Panel Controls, 5-2, 5-11, 5-12 Front Panel Display/Keypad, 5-3

-G-Gain Control (J2), 5-2 General, 2-8 Ground (GND), 2-8 -H-High Stability Oscillator, 2-6 High-Power C-Band Satellite Terminal Models, 6-10, 6-11 HPA, PS, U/C, and D/C, J3 DB37-Male, 1-14 HPCST-5000 Specifications, 1-17 -I-IF Local Oscillator, A-1, A-2 Included Parts, 6-12, 6-13, 7-4, A-1, A-2, A-5 Inspecting the Equipment, 3-4, 4-4 -K-Keypad Display, 24-Pin (12 x 2) Ribbon Connector (J5), 3-4.4-4 KP-10 Hand-Held Keypad (Optional), 6-9 -L-LNA Connector Kit, 1-20 LNA Installation, 3-16, 8-3 LNA Specification, 3-16 Low Noise Amplifier (LNA), 1-24 -M-M&C Board Connector Pinouts, 1-2, 1-10 Main Menu, 6-6 Message Structure, 5-4 Monitor, B-2 Monitor and Control (M&C), 1-6, 1-10, 1-15, 1-17, 1-22, 2-5, 2-7, 2-9, 3-4, 4-5, 5-1, 5-2, 5-3, 5-9, 6-1, B-2 -0-Options, 1-6, 1-10, 6-1 Output Waveguide Assembly, 1-4, 1-5, 1-17 -P-Prime Power (J5), 1-4, 1-5, 1-10, 1-17, 5-13, 7-3 Prime Power Specification, 2-4, 2-9

-R-Radio Frequency Terminals, 1-13 Radio Frequency Transceiver (RFT), 1-15 Redundancy Configuration Cabling Matrix, 1-9 Redundant Switch Unit (RSU), 4-29 Redundant System, 1-12 Remote Control, 1-8, 4-2, 4-22, 8-2, 8-12, 8-13, 8-14 Remote Interface, 2-4, 2-5, 5-1, 6-6 Remote Interface Specification, 2-2, 6-3, 6-4 Remote Relay Control, J2 DB15-Female, 6-4 RF Input (J1), 6-6 RF Input Isolation Circuit, 2-8 RF Output Monitor Port (J4), 1-15, 2-9 RFT Installation, 2-1, 2-2 RFT terminals, 1-13 Round Pole, 1-21 RX/RF Input (J4), 2-3 -S-Satellite Terminals, 1-13 Single Thread Configuration, 2-4 Spar Installation, 1-2, 1-10 Spar Mounting Kit, 3-14, 3-26, 4-16, 4-28 Specifications, 3-14, 3-26, 4-16, 4-28, 8-8, 8-9 Square Pole, 1-15, 1-16, 1-21, 1-22, 1-23, 1-24, 6-10, 6-12, 6-14, 6-17, 6-20, A-2, A-3, A-5, A-8 Start Character, 3-14, 3-25, 4-15, 4-27 Status Commands/Responses, B-2

Synthesizer, B-7 Synthesizers (DC/UC/LO), J4 DB37-Female, 1-18, 1-21, 1-22, 6-14, 6-15, 6-17, 6-20, A-3, A-4, A-5, A-8 System, 6–8 System Environment Specification, 1-8, 1-15, 1-16, 1-17, 1-18, 1-19, 2-8, 4-2, 4-22, 5-1, 7-2, 8-12, 8-13, 8-14, B-6 System Interfaces, 1–16 System Operation, 1-15, 1-16 System Receive Characteristics, 5-1 System RX Characteristics, 5-1 System Transmit Characteristics, 1–18 -T-Terminal Default Conditions, 1-19 Test Points and LEDs, 6-4 Theory of Operation, 6-10, 7-1 Tools Required, 6-4, 6-14, 6-18, 6-21, A-3, A-7, A-10 TX/IF Input (J1), 3-6, 4-7 TX/RF Output (J2), 2-2 -U-Universal Mounting Kit, 2-3 Unpacking, 3-1, 3-3, 3-18, 4-1, 4-3, 8-10, 8-11, 8-12, 8-14 Up Converter, 3-1, 3-3, 4-1, 4-3 -V-Vertical Pole Installation, 3-7, 3-19, 4-8, 6-15, 6-19, 6-20, A-8, A-9, B-4

## Chapter 2. EXTERNAL CONNECTIONS

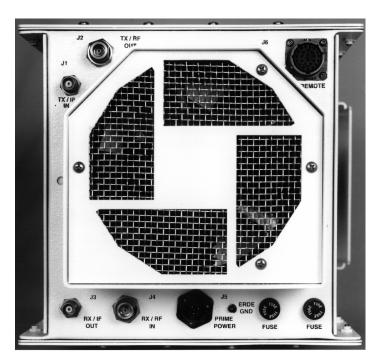
This chapter describes the external connections of the HPCST-5000 terminal system.



*Be alert when handling electrical equipment. Severe bodily harm may be the result.* 

#### 2.1 External Connections

Recommended Standard (RS) designations have been superseded by the new designation of the Electronic Industries Association (EIA). Reference to the old designations are shown <u>only</u> when depicting actual text displayed on the screen of the unit (RS-232, RS-485, etc.). All other references in the manual will be shown with the EIA designation (EIA-232, EIA-485, etc.).


#### 2.1.1 RFT External Connections

Connections between the RFT-500 and other equipment are made through six connectors. These connectors are listed in Table 2-1 and their locations are shown in Figure 2-1. The use of each connector is described in the following paragraphs.

Cables for connectors J2, J4, and J5 are supplied by EFData. A connector kit for the remote connector, J6, also is supplied. All other connections are customer-supplied.

| Name      | REF DES  | Connector Type  | Function                  |
|-----------|----------|-----------------|---------------------------|
| TX/IF IN  | J1       | TNC             | TX IF INPUT (70/140 MHz)  |
| TX/RF OUT | J2       | Type N          | 5.845 to 6.425 GHz Output |
| RX/IF OUT | J3       | TNC             | RX IF OUT (70/140 MHz)    |
| RX/RF IN  | J4       | Type N          | 3.620 to 4.200 GHz Input  |
| PRIME PWR | J5       | 3- or 4-pin CIR | Prime Power Input         |
| REMOTE    | J6       | 26-pin CIR      | Remote Interface          |
| GND       | ERDE GND | #10-32 Stud     | Chassis Ground            |

| Table 2-1. Rear Panel Connectors | Table 2-1. | Rear | Panel | Connectors |
|----------------------------------|------------|------|-------|------------|
|----------------------------------|------------|------|-------|------------|



**Figure 2-1. RFT External Connections** 

#### 2.1.1.1 TX/IF Input (J1)

The TX/IF input is a TNC connector that receives the signal from the indoor unit. The input impedance is  $50\Omega$ , and the frequency is  $70 \pm 18$  MHz (optional  $140 \pm 36$  MHz).

The typical power level is from -45 to -25 dBm, depending on the configuration and application.

#### 2.1.1.2 **TX/RF Output (J2)**

The TX/RF output is a type N connector that sends the signal to the antenna. The output impedance is  $50\Omega$ . The output frequency range is from 5.845 to 6.425 GHz. The output 1 dB compression point is +8 dBm.

#### 2.1.1.3 RX/IF Output (J3)

The RX/IF output is a TNC connector that sends the received signal to the indoor unit. The output impedance is  $50\Omega$ , and the frequency is  $70 \pm 18$  MHz (optional 140  $\pm$  36 MHz).

The 1 dB output compression point is +15 dBm. Maximum output power operation is +9 dBm (-6 dB from 1 dB compression) to -50 dBm, depending on system gain requirements. The down converter has 26 to 47 dB of gain, and is adjustable by the customer from 0 to 21 dB of attenuation.

The typical system gain includes a 50 dB LNA, making the total system gain 76 to 97 dB.

**Note:** A 60 dB LNA is used only when there are extremely long cables from the LNA to the down converter and can be ordered as an option.

#### 2.1.1.4 **RX/RF Input (J4)**

The RX/RF input is a type N connector that receives the signal from the LNA. The input impedance is  $50\Omega$ . The input frequency range is from 3.620 to 4.200 GHz. The input signal level ranges between -50 and -25 dBm, depending on LNA and antenna gain.

The input level should be set to give the required signal level at J3, the RX/IF Output.

#### 2.1.1.5 Prime Power (J5)

The AC power is supplied to the RFT by a 3-pin circular connector.

Normal input voltage is 90 to 265 VAC, 47 to 63 Hz, and 90W.

The AC pinout is as follows:

| Pin # | Name | Function     | Wire Color   |
|-------|------|--------------|--------------|
| А     | HI   | Line         | Brown        |
| В     | LO   | Neutral/Line | Blue         |
| С     | GND  | Ground       | Green/Yellow |

#### 2.1.1.6 Serial Remote Control (J6)

The remote connector on the RFT is used to interface the M&C functions to a remote location. This interface can be either EIA-232 or EIA-485 (Figure 2-2).

When using an EIA-485 interface, the TX and RX signals are able to accommodate either type of remote equipment pinouts. As long as the polarities of the remote equipment TX and RX signals are correct, this remote interface will be completely compatible.

Refer to Table 2-2 for a list of pinouts for the J6 connector.

For standard EIA-232 or EIA-485 applications, an adapter cable must be used to connect the 26-pin connector (J6) to a standard 9-pin D.

| Pin # | Name Description |         |                                                          |  |
|-------|------------------|---------|----------------------------------------------------------|--|
|       | EIA-232          | EIA-485 |                                                          |  |
| А     | GND              | -RX/TX  | RX/TX Data                                               |  |
| В     |                  | -RX/TX  | RX/TX Data                                               |  |
| С     |                  | +RX/TX  | RX/TX Data                                               |  |
| D     | CTS              | +RX/TX  | Clear to Send (see Note 1)                               |  |
| Е     | RD/RX            |         | Receive Data                                             |  |
| F     | RTS              |         | Ready to Send (see Note 1)                               |  |
| G     | TD/TX            |         | Transmit Data                                            |  |
| Н     | DSR              |         | Data Set Ready                                           |  |
| J     |                  | GND     | Ground                                                   |  |
| K     | LNA_PWR          |         | Output, 10V for powering LNA (see Note 2                 |  |
| L     | EXT_PWR          |         | Output voltage, 11V, to power RSU-503 and KP-10          |  |
| М     | EXT FLT          |         | Input, logic 0 or 5V: 5V = FLT, 0V = normal (see Note 3) |  |
| Ν     | N/C              |         |                                                          |  |
| Р     | SPARE            |         | N/C                                                      |  |
| R     | GND              |         | Ground                                                   |  |
| S     | SPARE            |         | N/C                                                      |  |
| Т     | PWR MON          |         | EXT HPA PWR Level Monitor (Future)                       |  |
| U     | UL_NC            |         | Uplink fault relay, connects to uplink COM with fault    |  |
| V     | UL_COM           |         | Uplink fault relay, COMMON                               |  |
| W     | UL_NO            |         | Uplink fault relay, opens with fault                     |  |
| Х     | DL_NC            |         | Downlink fault relay, connects to DL_COM with fault      |  |
| Y     | DL_COM           |         | Downlink fault relay, COMMON                             |  |
| Z     | DL_NO            |         | Downlink fault relay, opens with fault                   |  |
| а     | LNA PWR RTN      |         | Return for LNA Power (see Note 2)                        |  |
| b     | EXT_TEMP         |         | EXT HPA Temperature Monitor                              |  |
| с     | ENAB/DISAB       |         | EXT HPA RF Enable                                        |  |

Table 2-2. RFT Remote Control Connector, J6

#### Notes:

- 1. In EIA-232 mode, CTS is tied to RTS.
- 2. LNA can be powered from these pins instead of through the RF cable.
- 3. 5V is a floating level.

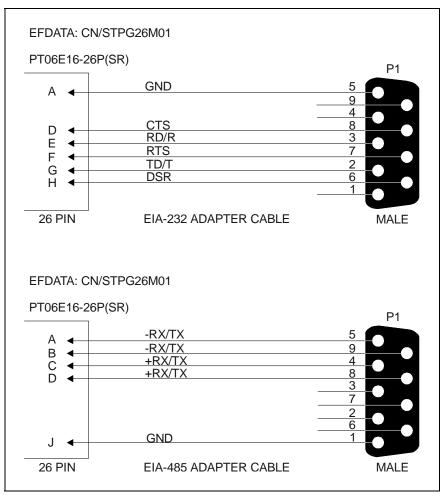



Figure 2-2. Serial Adapter Cables

#### 2.1.1.7 Ground (GND)

A #10-32 stud is available on the rear of the unit for the purpose of connecting a common chassis ground among all of the equipment.

#### 2.1.2 C-Band SSPA External Connections



Always terminate the output waveguide of the amplifier with an RF load capable of dissipating full CW RF power. Do not look into the output port of the powered RF amplifier. Severe bodily harm can be the result.

Connections between the C-Band SSPA and other equipment are made through five connectors. These connectors are listed in Table 2-3, and their locations are shown in Figure 2-3. The use of each connector is described in the following paragraphs.



Figure 2-3. C-Band SSPA External Connections

| Name                   | Ref Des | Connector Type     | Function                                                |
|------------------------|---------|--------------------|---------------------------------------------------------|
| RF Input               | J1      | N-Type, female     | RF Input                                                |
| Discrete Interface     | J3      | MS3112E16-26P (M)  | M&C port for RFT500                                     |
| RF Output Monitor Port | J4      | N-Type, female     | Independent M&C of output power levels (-40 dB coupled) |
| AC Line                | J5      | MS3102R16-10P (M)  | Prime Power Supply                                      |
| RF Output              | J7      | CPR-137G (Grooved) | W/G connection                                          |

#### 2.1.2.1 RF Input (J1)

The RF Input is an N-type connector that receives the signal from the RF TX output of the RFT. The input impedance is  $50\Omega$ .

The input frequency range is from 5.845 to 6.425 GHz.

The input level should be set to give the required signal at J7, RF Output.

#### 2.1.2.2 Gain Control (J2)

The potentiometer located under the cover is used to set nominal system gain. Adjustment range is 6 dB minimum.

**Note:** Gain Control shall be covered with a sealed metal cover and secured with screws and washers.

#### 2.1.2.3 Discrete Interface (J3)

The SSPA is controlled using a discrete interface. Control commands to the SSPA are collected from the monitor and control system of the RFT-500. The following table lists the dedicated pin outs for the 26-pin monitor and control connector of the SSPA.

| Туре            | Pin | Function                      |              |
|-----------------|-----|-------------------------------|--------------|
| Control Command | Н   | RF Enable                     | (see Note 1) |
|                 | R   | System Common                 | (see Note 1) |
| Status Command  | D   | Summary Fault (Open on Fault) | (see Note 2) |
|                 | С   | Thermistor Output             | (see Note 3) |
|                 | Е   | Future                        |              |
|                 | G   | Status Common                 |              |

#### Notes:

- RF Enable (Pin H connected to Pin R) required to turn the RF Output ON. Disconnecting the RF Enable pin from the system control pin will cause the C-Band SSPA to reset. If default parameters must be reloaded, they will not affect the normal gain of the unit.
- 2. The Summary Fault contact will be in a NO FAULT condition (Pin D connected to Pin G), until a C-Band SSPA fault is detected. This is regardless of the RF Enable input state. When an internal summary fault is detected, the C-Band SSPA will automatically mute its output. When a summary fault condition clears the summary fault output, the RF Output will return to the NO FAULT condition after a RESET (AC power ON/OFF cycle).
- 3. A thermistor is mounted in order to accurately reflect the temperature of the C-Band SSPA's RF components. One lead is connected to Status Common (Pin G) and the other lead is connected to Thermistor Output (Pin C).

#### 2.1.2.4 RF Output Monitor Port (J4)

This RF interface is used for independent monitoring of the C-Band SSPA's output power levels through the use of an external power meter.

#### 2.1.2.5 Prime Power (J5)

The power supply portion of the C-Band SSPA supplies all the internal voltage necessary to operate the RF section and the Alarm/Interface board. The power supply is configured for 90 to 265 VAC.

| Pin | Function | Wire Color   |
|-----|----------|--------------|
| Α   | Line     | Brown        |
| В   | Ground   | Green/Yellow |
| С   | Neutral  | Blue         |

#### 2.1.2.6 RF Output (J7)

Waveguide connection CPR-137R (grooved) is located on the side of the C-Band SSPA.

#### 2.1.2.7 Alarm/Interface Board

The Alarm/Interface board provides:

- Status indicator by Form-C relay contacts:
  - ♦ Fault
  - Alarm
  - High reflected power (HRP)
  - RF mute
  - Output power level monitoring
- Mute mode which may be asserted by a remote current mode MUTE signal. A current rating of 20 mA may be a MUTE or ENABLE signal.
- Reset the HRP latch by remote current mode RESET signal. A current rating of 20 mA may reset the HRP latch if this condition occurred.
- The alarm/interface board is connected to the microwave power amplifier and to the customer's interface.

The Alarm/Interface board receives the analog signal from the reflected power sensor. The power amplifier will be muted when the input voltage is above the threshold level (with 1 second delay). When this event has occurred, HRP relay is de-energized and its Normal Close contact will become OPEN. It will indicate the fault condition on the customer interface.

Power up returns the system to the active condition if the amplifier is in the normal condition. The threshold level is set for VSWR of 2:1 maximum.



Prolonged operation without a load at the output may cause severe bodily harm. Do not operate the unit if the RF output is not connected to a load.